Analysis of Experience, Training and Competence Can Drive Human Resource Performance

Fadhlan Furqani

Abstract


Improving HR performance is a fundamental pillar that supports the entire architecture of organizational success. Performance is not merely an end result, but rather a reflection of how effectively each individual contributes to achieving company goals. According to Widodo (2009), good organizational performance is firmly rooted in the effectiveness of human resource management itself, which can be measured by high levels of HR productivity, creativity, and innovation. The type of research used in this study is explanatory quantitative research, which aims to explain the cause-and-effect relationships between variables through statistical analysis. This study examines the influence of work experience and training on competency, which in turn affects employee performance. Using quantitative methods, data is collected through surveys or questionnaires and analyzed statistically to identify relationships between variables. Training & competency are the Most Dominant Determinants of Performance. The research findings firmly prove that training & competency have a very strong, positive, and significant influence on HR performance. This relationship is the most dominant in the model. This confirms that an employee's mastery of adequate knowledge, skills, and attitudes is a primary prerequisite for achieving optimal work performance. Good HR performance cannot be achieved without a solid foundation of competency.

Full Text:

PDF

References


Arikunto, S. (1993). Prosedur Penelitian Suatu Pendekatan Praktik. Rineka Cipta.

Arta, D. N. C., Leuhery, F., Abubakar, H., Yusuf, M., & Cakranegara, P. A. (2022). Literature review: Analysis of the relationship between training and employee performance in a company.

Azwar, S. (1998). Reliabilitas dan Validitas. Pustaka Pelajar.

Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. Dalam G. A. Marcoulides (Ed.), Modern Methods for Business Research (hlm. 295–336). Lawrence Erlbaum.

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50.

Ghozali, I. (2005). Structural Equation Modeling: Metode Alternatif dengan Partial Least Square (PLS). Badan Penerbit Universitas Diponegoro.

Hair, J. F. (2010). Multivariate Data Analysis: A Global Perspective. Pearson Education.

Ratulangi, R. S., & Soegoto, A. S. (2016). Pengaruh pengalaman kerja, kompetensi, motivasi terhadap kinerja karyawan (studi pada PT. Hasjrat Abadi Tendean Manado).

Ruhana, I. (2012). Pengembangan kualitas sumber daya manusia vs daya saing global.

Sarstedt, M., Ringle, C. M., & Hair, J. F. (2019). Partial Least Squares Structural Equation Modeling. Dalam C. H. van Riel, C. M. Ringle, & S. W. H. Nitzsche (Eds.), The SAGE Handbook of Management (hlm. 1–28). SAGE Publications.

Sugiono. (2016). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Alfabeta.

Sewang, S., Umar, S. M., Yusuf, D., & Kasim, H. (2024). Manajemen sumber daya manusia (SDM) upaya peningkatan kinerja karyawan di era globalisasi.

Sugiono. (2016). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Alfabeta.

Widodo, T. (2017). Metodologi Penelitian Sosial dan Manajemen. UPP STIM YKPN.

Widodo, W. (2009). MODEL PENGEMBANGAN EVALUASI STRATEGI. Majalah Ekonomi, 19(1).


Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/4.0/deed.en


Jurnal SAMaJ Indexed by :

google_scholar onesearch garuda crosref onesearch  sinta scopus