Bioactive Glass Fiber-Reinforced Composite For Bone Regeneration

Mochammad Taha Ma'ruf*    -  Dental Material Department, Faculty of Dentistry, Universitas Mahasaraswati Denpasar, Bali, Indonesia, Indonesia

(*) Corresponding Author

Background: Bone regeneration remains a critical challenge in tissue engineering, with current solutions such as autografts and allografts facing limitations in availability, cost, and biocompatibility. Bioactive glass fiber-reinforced composites (BGFRC) have emerged as a promising alternative, combining the bioactivity of bioactive glass with the mechanical strength of fiber-reinforced materials.

Methods: This literature review synthesizes findings from 46 recent journal articles and books on bioactive glass, bioactive glass fibers, and BGFRC. The review focuses on material composition, mechanical properties, fabrication techniques, and biological interactions. Key aspects include the role of bioactive glass in promoting osteointegration and the reinforcement provided by glass fibers to enhance mechanical performance.

Results: BGFRC exhibits superior bioactivity by forming a hydroxyapatite layer upon exposure to physiological fluids, facilitating strong bonding with bone tissue. The release of therapeutic ions stimulates osteogenesis and angiogenesis, promoting bone regeneration. The incorporation of glass fibers significantly improves mechanical properties, including compressive strength and fracture toughness, making BGFRC suitable for load-bearing applications. Advancements in fabrication techniques such as sol-gel processing and 3D printing allow for precise control over porosity and degradation rates, optimizing scaffold design for clinical applications.

Conclusion: BGFRC represents a highly promising material for bone tissue engineering due to its enhanced bioactivity, mechanical reinforcement, and biocompatibility. Future research should focus on optimizing composite formulations and exploring clinical applications to further validate their effectiveness in bone regeneration.

Keywords: traumatic injuries, disease

  1. Fu Q. Strong, Tough Bioactive Glasses and Composite Scaffolds.; 2022. doi:10.1002/9781119724193.ch8
  2. Montazerian M, Zanotto ED. Bioactive and inert dental glass-ceramics. J Biomed Mater Res A. 2017; 105(2):619-639. doi:10.1002/jbm.a.35923
  3. Montazerian M, Zanotto ED. Restorative Dental Glass-Ceramics: Current Status and Trends.; 2017. doi:10.1007/978-3-319-56059-5_9
  4. Khan AS, Azam MT, Khan M, Mian SA, Rehman IU. An update on glass fiber dental restorative composites: A systematic review. Materials Science and Engineering C. 2015; 47:26-39. doi:10.1016/j.msec.2014.11.015
  5. Chawla K, Goyal L. Dentistry: Advances in Research and Future Directions.; 2021.
  6. Syed MR, Khan M, Sefat F, Khurshid Z, Zafar MS, Khan AS. Bioactive Glass and Glass Fiber Composite: Biomedical/Dental Applications.; 2018. doi:10.1016/B978-0-08-102196-5.00017-3
  7. Safwat EM, Khater AGA, Abd-Elsatar AG, Khater GA. Glass fiber-reinforced composites in dentistry. Bull Natl Res Cent. 2021; 45(1). doi:10.1186/s42269-021-00650-7
  8. Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive glass applications in dentistry. Int J Mol Sci. 2019; 20(23). doi:10.3390/ijms20235960
  9. Mangoush E, Säilynoja E, Prinssi R, Lassila L, Vallittu PK, Garoushi S. Comparative evaluation between glass and polyethylene fiber reinforced composites: A review of the current literature. J Clin Exp Dent. 2017; 9(12):1408-1417. doi:10.4317/jced.54205
  10. Fernandes JV, Guedes DG, da Costa FP, et al. Sustainable ceramic materials manufactured from ceramic formulations containing quartzite and scheelite tailings. Sustainability (Switzerland). 2020; 12(22):1-14. doi:10.3390/su12229417
  11. Dhinasekaran D, Kumar A. Fabrication of Bioactive Structures from Sol-Gel Derived Bioactive Glass.; 2022. doi:10.1002/9781119724193.ch6
  12. Poologasundarampillai G, Obata A. Electrospun Bioactive Glass and Organic-Inorganic Hybrid Fibers for Tissue Regeneration and Drug Delivery.; 2020. doi:10.1016/B978-0-12-819611-3.00003-0
  13. Huang C, Yu M, Li H, et al. Research Progress of Bioactive Glass and Its Application in Orthopedics. Adv Mater Interfaces. 2021; 8(22). doi:10.1002/admi.202100606
  14. Riveiro A, Quintero F, Del Val J, et al. Laser spinning of 13-93 bioactive glass nanofibers. In: Materials Science and Technology 2019; 019:946-951. doi:10.7449/2019/MST_2019_946_951
  15. Eichhorn J, Elschner C, Groß M, et al. Spinning of endless bioactive silicate glass fibres for fibre reinforcement applications. Applied Sciences (Switzerland). 2021; 11(17). doi:10.3390/app11177927
  16. Riveiro A, Penide J, Comesaña R, et al. Bioactive Glass Nanofibers: Synthesis and Applications. 2022. doi:10.1016/B978-0-323-85671-3.00011-7
  17. Cannio M, Bellucci D, Roether JA, Boccaccini DN, Cannillo V. Bioactive glass applications: A literature review of human clinical trials. Materials. 2021; 14(18). doi:10.3390/ma14185440
  18. Rahaman MN, Xiao W, Huang W. Bioactive Glass Composites for Bone and Musculoskeletal Tissue Engineering. 2017. doi:10.1016/B978-0-08-100936-9.00013-7
  19. Balu S, Andra S, Jeevanandam J, Danquah MK. Bioactive Glass Composites: From Synthesis to Application; 2021; doi:10.1016/B978-0-12-821553-1.00009-0
  20. Will J, Gerhardt LC, Boccaccini AR. Bioactive glass-based scaffolds for bone tissue engineering. Adv Biochem Eng Biotechnol. 2012; 126:195-226. doi:10.1007/10_2011_106
  21. Ravindranadh K. Bioactive glasses for technological and clinical applications. International Journal of Chemical Sciences. 2016; 14(3):1339-1348.
  22. Piatti E, Miola M, Liverani L, Verné E, Boccaccini AR. Poly(ε-caprolactone)/bioactive glass composite electrospun fibers for tissue engineering applications. J Biomed Mater Res A. 2023; 111(11):1692-1709. doi:10.1002/jbm.a.37578
  23. Massera J. Bioactive Glass-Ceramics: From Macro to Nano. 2019. doi:10.1016/B978-0-08-102594-9.00010-3
  24. Abuzinadah AJ, Merdad YMA, Aldharrab RS, Almutairi WA, Yeslam HE, Hasanain FA. Microhardness and Compressive Strength of Bulk Fill Glass Hybrid Material and Other Direct Restorative Materials. Journal of Composites Science. 2024; 8(12). doi:10.3390/jcs8120508
  25. Raju R, Rajan G, Farrar P, Prusty BG. Dimensional stability of short fibre reinforced flowable dental composites. Sci Rep. 2021; 11(1). doi:10.1038/s41598-021-83947-x
  26. Carneiro ER, Coelho AS, Amaro I, et al. Mechanical and tribological characterization of a bioactive composite resin. Applied Sciences (Switzerland). 2021; 11(17). doi:10.3390/app11178256
  27. Saravia-Rojas MA, Espinoza-Jiménez G, Huanambal-Tiravanti VA, Geng-Vivanco R. Restoration of a Vital Tooth With Extensive Crown Destruction Using Glass Fiber and Polyethylene Fiber-reinforced Composite Resin: A Clinical Case. Oper Dent. 2023; 48(5):476-482. doi:10.2341/22-127-S
  28. Bouillaguet S, Schütt A, Alander P, et al. Hydrothermal and mechanical stresses degrade fiber-matrix interfacial bond strength in dental fiber-reinforced composites. J Biomed Mater Res B Appl Biomater. 2006; 76(1):98-105. doi:10.1002/jbm.b.30349
  29. Kaur G, Kumar V, Baino F, et al. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Materials Science and Engineering C. 2019; 104. doi:10.1016/j.msec.2019.109895
  30. Almulhim KS, Rehman SU, Ali S, Ahmad S, Khan AS. Bibliometric analysis of the current status and trends in dental applications of glass fiber-reinforced composites from 1998 to 2022. Dent Med Probl. 2024; 61(5):783-795. doi:10.17219/dmp/171803
  31. Vallittu PK. Fibre-Reinforced Composites (FRCs) as Dental Materials.; 2012. doi:10.1533/9780857096432.3.352
  32. Mora P, Rimdusit S, Karagiannidis P, Srisorrchart U, Jubsilp C. Biocompatibility, thermal and mechanical properties of glass fiber-reinforced polybenzoxazine composites as a potential new endodontic post. Polym Compos. 2024; 45(17):16205-16217. doi:10.1002/pc.28900
  33. Fu Q. Bioactive Glass Scaffolds for Bone Tissue Engineering.; 2018. doi:10.1016/B978-0-08-102196-5.00015-X
  34. Dixit K, Sinha N. Additively Manufactured Nanofiber Reinforced Bioactive Glass Based Functionally Graded Scaffolds for Bone Tissue Engineering. In: IEEE International Conference on Nano/Molecular Medicine and Engineering, NANOMED. Vol 2020-Novem. 2019; 47-51. doi:10.1109/NANOMED49242.2019.9130605
  35. Park J, Na H, Choi SC, Kim HJ. Biocompatibility of 13-93 bioactive glass-SiC fabric composites. Journal of the Korean Ceramic Society. 2019; 56(2):205-210. doi:10.4191/kcers.2019.56.2.12
  36. Gritsch L, Perrin E, Chenal JM, et al. Combining bioresorbable polyesters and bioactive glasses: Orthopedic applications of composite implants and bone tissue engineering scaffolds. Appl Mater Today. 2021; 22. doi:10.1016/j.apmt.2020.100923
  37. Felgueiras HP, Amorim TMP. Production of Polymer-Bioactive Glass Nanocomposites for Bone Repair and Substitution; 2019. doi:10.1016/B978-0-12-816909-4.00012-9
  38. Labbaf S, Houreh AB, Rahimi M, Ting HK, Jones JR, Nasr-Esfahani MH. Bioactive glass-polycaprolactone fiber membrane and response of dental pulp stem cells in vitro. Biomedical Glasses. 2018; 4(1):123-130. doi:10.1515/bglass-2018-0011
  39. Han B, Wang L. Global trend and hotspot of resin materials for dental caries repair: a bibliometric analysis. Front Mater. 2024; 11. doi:10.3389/fmats.2024.1337972
  40. Lv N, Zhou Z, Hong L, Li H, Liu M, Qian Z. Zinc-energized dynamic hydrogel accelerates bone regeneration via potentiating the coupling of angiogenesis and osteogenesis. Front Bioeng Biotechnol. 2024; 12. doi:10.3389/fbioe.2024.1389397
  41. Vallittu PK, Posti JP, Piitulainen JM, et al. Biomaterial and implant induced ossification: in vitro and in vivo findings. J Tissue Eng Regen Med. 2020;14(8):1157-1168. doi:10.1002/term.3056
  42. Piitulainen JM, Posti JP, Aitasalo KMJ, Vuorinen V, Vallittu PK, Serlo W. Paediatric cranial defect reconstruction using bioactive fibre-reinforced composite implant: early outcomes. Acta Neurochir (Wien). 2015; 157(4):681-687. doi:10.1007/s00701-015-2363-2
  43. Ensoylu M, Deliormanlı AM, Atmaca H. Tungsten disulfide nanoparticle-containing PCL and PLGA-coated bioactive glass composite scaffolds for bone tissue engineering applications. J Mater Sci. 2021; 56(33):18650-18667. doi:10.1007/s10853-021-06494-w
  44. Thomas A, Johnson E, Agrawal AK, Bera J. Preparation and characterization of glass-ceramic reinforced alginate scaffolds for bone tissue engineering. J Mater Res. 2019; 34(22):3798-3809. doi:10.1557/jmr.2019.343
  45. Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018; 3(3):278-314. doi:10.1016/j.bioactmat.2017.10.001
  46. Oudadesse H, Najem S, Mosbahi S, et al. Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications. J Biomed Mater Res A. 2021; 109(5):590-599. doi:10.1002/jbm.a.37043

Lisensi Creative Commons
This work is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.
Contact us: Odonto Dental Journal: Jl. Raya Kaligawe Km.4, PO BOX 1054/SM Semarang, Central Java, Indonesia, 50112. Email: odontodentaljournal@unissula.ac.id
apps