The Role of IL-6 and IGF-1 in Periodontitis Bone Destruction

Abidah Ikrima*  -  Universitas Indonesia, Indonesia
Erwin Gunawan  -  Universitas Indonesia, Indonesia
Devi Kartika Rohmah  -  Universitas Indonesia, Indonesia
Boy Muchlis Bachtiar  -  Universitas Indonesia, Indonesia
Endang Winiati Bachtiar  -  Universitas Indonesia, Indonesia

(*) Corresponding Author

Periodontitis is an inflammatory condition affecting the tissues supporting the teeth, destroying the periodontal ligament and alveolar bone. This condition is initiated by periodontal pathogens, which trigger an immune response resulting in tissue damage. Pro-inflammatory cytokines, particularly IL-6, have an important role in this process. IL-6, produced by various cells, including immune and periodontal ligament cells, enhances osteoclastogenesis by enhancing RANKL expression, thereby promoting bone resorption. Conversely, IGF-1, a hormone like insulin, is critical in bone homeostasis and regeneration. IGF-1, synthesised in the liver and locally in tissues, aids in the proliferation and differentiation of osteoblasts and osteoclasts, facilitating bone remodelling. IGF-1 also interacts with IL-6 to modulate inflammatory responses and osteoclast activity. Understanding the interplay between IL-6 and IGF-1 offers insights into the mechanism of bone resorption in periodontitis and identifies potential therapeutic targets. This study aims to elucidate the roles of IL-6 and IGF-1 in periodontitis-induced bone resorption and explore their therapeutic implications for periodontal health. 

Keywords: Periodontitis; IL-6; IGF-1; Bone Destruction

  1. Newman MG, Takei HH. Newman and Carranza’s Clinical Periodontology THIRTEENTH EDITION [Internet]. Thirteenth Edition. Elsevier; 2019. 1880 p. Available from: www.pdflobby.com
  2. Mazurek-Mochol M, Bonsmann T, Mochol M, Poniewierska-Baran A, Pawlik A. The Role of Interleukin 6 in Periodontitis and Its Complications. Vol. 25, International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI); 2024.
  3. Cardoso EM, Reis C, Manzanares-Céspedes MC. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases. Postgrad Med [Internet]. 2018 Jan 2 [cited 2025 Jan 11];130(1):98–104. Available from: https://doi.org/10.1080/00325481.2018.1396876
  4. Ramadan DE, Hariyani N, Indrawati R, Ridwan RD, Diyatri I. Cytokines and Chemokines in Periodontitis. Eur J Dent [Internet]. 2020 Jul 1 [cited 2025 Jan 11];14(3):483. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7440949/
  5. Vardam TD, Zhou L, Appenheimer MM, Chen Q, Wang WC, Baumann H, et al. Regulation of a lymphocyte-endothelial-IL-6 trans-signaling axis by fever-range thermal stress: Hot spot of immune surveillance. Vol. 39, Cytokine. 2007. p. 84–96.
  6. Kishimoto T. Interleukin-6: Discovery of a pleiotropic cytokine. Arthritis Res Ther. 2006 Jul;8(SUPPL. 2).
  7. Sirin DA, Ozcelik F, Ersahan S, Pence HH. The importance of inflammatory biomarkers, IL-6 and PAPP-A, in the evaluation of asymptomatic apical periodontitis. Odontology. 2021 Jan 1;109(1):250–8.
  8. Guillot JL, Pollock SM, Johnson RB. Gingival interleukin-6 concentration following phase I therapy. J Periodontol [Internet]. 1995 Aug [cited 2024 Apr 24];66(8):667–72. Available from: https://pubmed.ncbi.nlm.nih.gov/7473008/
  9. Zhang X, Hu F, Li J, Chen L, Mao Y fei, Li Q bo, et al. IGF-1 inhibits inflammation and accelerates angiogenesis via Ras/PI3K/IKK/NF-κB signaling pathways to promote wound healing. European Journal of Pharmaceutical Sciences. 2024 Sep 1;200:106847.
  10. Kero D, Kalibovic Govorko D, Medvedec Mikic I, Vukojevic K, Cigic L, Saraga-Babic M. Analysis of expression patterns of IGF-1, caspase-3 and HSP-70 in developing human tooth germs. Arch Oral Biol. 2015 Oct 1;60(10):1533–44.
  11. LeRoith D, Holly JMP, Forbes BE. Insulin-like growth factors: Ligands, binding proteins, and receptors. Vol. 52, Molecular Metabolism. Elsevier GmbH; 2021.
  12. Yanar KE, Gür C, Değirmençay Ş, Aydın Ö, Aktaş MS, Baysal S. Insulin-like growth factor-1 expression levels in pro-inflammatory response in calves with neonatal systemic inflammatory response syndrome. Vet Immunol Immunopathol. 2024 Feb 1;268.
  13. Reckenbeil J, Kraus D, Stark H, Rath-Deschner B, Jäger A, Wenghoefer M, et al. Insulin-like growth factor 1 (IGF1) affects proliferation and differentiation and wound healing processes in an inflammatory environment with p38 controlling early osteoblast differentiation in periodontal ligament cells. Arch Oral Biol. 2017 Jan 1;73:142–50.
  14. Choi YS, Kim YC, Ji S, Choi Y. Increased Bacterial Invasion and Differential Expression of Tight‐Junction Proteins, Growth Factors, and Growth Factor Receptors in Periodontal Lesions. J Periodontol. 2014 Aug;85(8).
  15. Li Y, Chen Y, Cai G, Ni Q, Geng Y, Wang T, et al. Roles of trained immunity in the pathogenesis of periodontitis. Vol. 58, Journal of Periodontal Research. John Wiley and Sons Inc; 2023. p. 864–73.
  16. Xu XW, Liu X, Shi C, Sun HC. Roles of Immune Cells and Mechanisms of Immune Responses in Periodontitis. Chin J Dent Res. 2022 Jan 14;24(4):219–30.
  17. Usui M, Onizuka S, Sato T, Kokabu S, Ariyoshi W, Nakashima K. Mechanism of alveolar bone destruction in periodontitis — Periodontal bacteria and inflammation. Vol. 57, Japanese Dental Science Review. Elsevier Ltd; 2021. p. 201–8.
  18. Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci. 2019 Sep 1;11(3).
  19. Becerra Ruiz JS, Guerrero Velázquez C, Martínez-Esquivias F, Martínez-Pérez LA, Guzmán Flores JM. Innate and adaptive immunity of periodontal disease. From etiology to alveolar bone loss. Oral Dis. 2022 Sep 1;28(6):1441–7.
  20. Tsukasaki M. RANKL and osteoimmunology in periodontitis. Vol. 39, Journal of Bone and Mineral Metabolism. Springer Japan; 2021. p. 82–90.
  21. Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. J Immunol Res. 2015;2015.
  22. Zhou M, Graves DT. Impact of the host response and osteoblast lineage cells on periodontal disease. Vol. 13, Frontiers in Immunology. Frontiers Media S.A.; 2022.
  23. Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: From physiopathology to therapy. J Hepatol. 2016;64:1403–15.
  24. Uciechowski P, Dempke WCM. Interleukin-6: A Masterplayer in the Cytokine Network. Vol. 98, Oncology (Switzerland). S. Karger AG; 2020. p. 131–7.
  25. Song Z, Ren D, Xu X, Wang Y. Molecular cross-talk of IL-6 in tumors and new progress in combined therapy. Vol. 9, Thoracic Cancer. John Wiley and Sons Inc.; 2018. p. 669–75.
  26. Forcina L, Miano C, Scicchitano BM, Musarò A. Signals from the niche: Insights into the role of IGF-1 and IL-6 in modulating skeletal muscle fibrosis. Vol. 8, Cells. MDPI; 2019.
  27. Bakker AD, Jaspers RT. IL-6 and IGF-1 Signaling Within and Between Muscle and Bone: How Important is the mTOR Pathway for Bone Metabolism? Vol. 13, Current Osteoporosis Reports. Current Medicine Group LLC 1; 2015. p. 131–9.
  28. Ando Y, Tsukasaki M, Huynh NCN, Zang S, Yan M, Muro R, et al. The neutrophil–osteogenic cell axis promotes bone destruction in periodontitis. Int J Oral Sci. 2024 Dec 1;16(1).
  29. Isola G, Lo Giudice A, Polizzi A, Alibrandi A, Murabito P, Indelicato F. Identification of the different salivary Interleukin-6 profiles in patients with periodontitis: A cross-sectional study. Arch Oral Biol. 2021 Feb 1;122.
  30. Tsukasaki M, Komatsu N, Nagashima K, Nitta T, Pluemsakunthai W, Shukunami C, et al. Host defense against oral microbiota by bone-damaging T cells. Nat Commun. 2018 Dec 1;9(1).
  31. Nolde M, Alayash Z, Reckelkamm SL, Kocher T, Ehmke B, Holtfreter B, et al. Downregulation of interleukin 6 signaling might reduce the risk of periodontitis: a drug target Mendelian randomization study. Front Immunol. 2023 Jun 5;14:1160148.
  32. Kobayashi T, Ito S, Kobayashi D, Kojima A, Shimada A, Narita I, et al. Interleukin-6 receptor inhibitor tocilizumab ameliorates periodontal inflammation in patients with rheumatoid arthritis and periodontitis as well as tumor necrosis factor inhibitors. Clin Exp Dent Res. 2015 Dec 1;1(2):63–73.
  33. Kobayashi T, Okada M, Ito S, Kobayashi D, Ishida K, Kojima A, et al. Assessment of Interleukin‐6 Receptor Inhibition Therapy on Periodontal Condition in Patients With Rheumatoid Arthritis and Chronic Periodontitis. J Periodontol. 2014 Jan;85(1):57–67.
  34. Daan J. A. Crommelin, Robert D. Sindelar, Bernd Meibohm, editors. Pharmaceutical Biotechnology. Fifth Edition. Springer; 2019. 437–440 p.
  35. Hall John E., Guyton Arthur C., editors. Textbook of Medical Physiology. Twelve Edition. Saunders Elsevier; 895–900 p.
  36. Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The growth hormone receptor: Mechanism of receptor activation, cell signaling, and physiological aspects. Vol. 9, Frontiers in Endocrinology. Frontiers Media S.A.; 2018.
  37. Dixit M, Poudel SB, Yakar S. Effects of GH/IGF axis on bone and cartilage. Vol. 519, Molecular and Cellular Endocrinology. Elsevier Ireland Ltd; 2021.
  38. Fang J, Zhang X, Chen X, Wang Z, Zheng S, Cheng Y, et al. The role of insulin-like growth factor-1 in bone remodeling: A review. Vol. 238, International Journal of Biological Macromolecules. Elsevier B.V.; 2023.
  39. Crane JL, Cao X. Function of matrix IGF-1 in coupling bone resorption and formation. Vol. 92, Journal of Molecular Medicine. 2014. p. 107–15.
  40. Huang H, Wang J, Zhang Y, Zhu G, Li YP, Ping J, et al. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts. Bone. 2018 Sep 1;114:161–71.
  41. Asparuhova MB, Riedwyl D, Aizawa R, Raabe C, Couso-Queiruga E, Chappuis V. Local Concentrations of TGF-β1 and IGF-1 Appear Determinant in Regulating Bone Regeneration in Human Postextraction Tooth Sockets. Int J Mol Sci. 2023 May 1;24(9).
  42. Li X, Liao D, Sun G, Chu HW. Odontogenesis and neuronal differentiation characteristics of periodontal ligament stem cells from beagle dog. J Cell Mol Med. 2020 May 1;24(9):5146–51.
  43. Jiang R, Wang M, Shen X, Huang S, Han J, Li L, et al. SUMO1 modification of IGF-1R combining with SNAI2 inhibited osteogenic differentiation of PDLSCs stimulated by high glucose. Stem Cell Res Ther [Internet]. 2021 Dec 1 [cited 2025 Jan 12];12(1):1–14. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-021-02618-w

Lisensi Creative Commons
This work is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.
Contact us: Odonto Dental Journal: Jl. Raya Kaligawe Km.4, PO BOX 1054/SM Semarang, Central Java, Indonesia, 50112. Email: odontodentaljournal@unissula.ac.id
apps