Performance and Durability of High-Volume Fly Ash Concrete Incorporating Bacillus safensis : A Comparative Study of Class C and Class F Fly Ash

Januarti Jaya Ekaputri, Iqlima Nuril Amini, Dzikrie Fikriyan Syah, Davin H. Ekaputra Setiamarga, Makno Basoeki, Luki Danardi, Irwanda Laory, Martin Anda, Mahendra Andiek Maulana, Meity Wulandari

Abstract


This study investigates the performance and durability of high-volume fly ash (HVFA) concrete enriched with Bacillus safensis, focusing on the comparative influence of Class C and Class F fly ash. Concrete mixtures were prepared with varying proportions of both fly ash types, with and without microbial addition, and tested for fresh and hardened properties including compressive strength, splitting tensile strength, porosity, and workability. Durability was further evaluated using the rapid chloride penetration test (RCPT) and accelerated corrosion test (ACT).Results showed that Class C fly ash, with its higher calcium content, produced a denser microstructure and improved early compressive strength. In contrast, Class F fly ash supported more favorable long-term microbial activity due to greater porosity and water availability. Incorporating Bacillus safensis enhanced compressive strength by up to 8% and significantly reduced chloride ion penetration, particularly in Class F fly ash concrete, through calcium carbonate precipitation within the pores. However, microbial addition was associated with reduced splitting tensile strength, likely due to differences in failure mechanisms. Long-term observations revealed strength gains of up to 13.3% after one year in microbial HVFA concrete.These findings demonstrate the synergistic contribution of Bacillus safensis and the effect of fly ash type to the improvement of sustainability and durability of HVFA concrete.


Keywords


Bacillus safensis;Durability;High-Volume Fly Ash Concrete;Microbial-Induced Calcium Carbonate Precipitation (MICP);Responsible Consumption and Production

References


Y. Guo et al., “A review of low-carbon technologies and projects for the global cement industry,” J. Environ. Sci. (China), vol. 136, pp. 682–697, 2024, doi: 10.1016/j.jes.2023.01.021.

E. Khalil and M. AbouZeid, “A global assessment tool for cement plants improvement measures for the reduction of CO2 emissions,” Results Eng., vol. 26, no. November 2024, p. 104767, 2025, doi: 10.1016/j.rineng.2025.104767.

B. Krishna Chaitanya and I. Sivakumar, “Influence of waste copper slag on flexural strength properties of self compacting concrete,” Mater. Today Proc., vol. 42, pp. 671–676, 2020, doi: 10.1016/j.matpr.2020.11.059.

M. M. A. Elahi et al., “Improving the sulfate attack resistance of concrete by using supplementary cementitious materials (SCMs): A review,” Constr. Build. Mater., vol. 281, p. 122628, 2021, doi: 10.1016/j.conbuildmat.2021.122628.

G. V. P. Bhagath Singh and V. Durga Prasad, “Environmental impact of concrete containing high volume fly ash and ground granulated blast furnace slag,” J. Clean. Prod., vol. 448, no. October 2023, p. 141729, 2024, doi: 10.1016/j.jclepro.2024.141729.

D. Wang, X. Zhou, Y. Meng, and Z. Chen, “Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack,” Constr. Build. Mater., vol. 147, pp. 398–406, 2017, doi: 10.1016/j.conbuildmat.2017.04.172.

A. R. Muhammad, J. J. Ekaputri, and M. Basoeki, “The Effect of Microbes and Fly Ash to Improve Concrete Performance,” J. Adv. Civ. Environ. Eng., vol. 4, no. 2, p. 60, 2021, doi: 10.30659/jacee.4.2.60-69.

ASTM International, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM C618-23, West Conshohocken, PA, USA, 2023.

T. Mohammed, F. Aguayo, M. Nodehi, and T. Ozbakkaloglu, “Engineering properties of structural lightweight concrete containing expanded shale and clay with high volume class F and class C fly ash,” Struct. Concr., vol. 24, no. 3, pp. 4029–4046, 2023, doi: 10.1002/suco.202200562.

M. Sumer, “Compressive strength and sulfate resistance properties of concretes containing Class F and Class C fly ashes,” Constr. Build. Mater., vol. 34, pp. 531–536, 2012, doi: 10.1016/j.conbuildmat.2012.02.023.

E. Danilyan, J. J. Ekaputri, E. Zulaika, P. Risdanareni, and D. Snoeck, “Utilization of soil microbial community to enhance mechanical properties of geopolymer paste for sustainable construction materials,” Case Stud. Constr. Mater., vol. 22, no. September 2024, p. e04727, 2025, doi: 10.1016/j.cscm.2025.e04727.

K. D. Wulandari et al., “Effect of microbes addition on the properties and surface morphology of fly ash-based geopolymer paste,” J. Build. Eng., vol. 33, no. May 2020, p. 101596, 2021, doi: 10.1016/j.jobe.2020.101596.

V. Achal, X. Pan, and N. Özyurt, “Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation,” Ecol. Eng., vol. 37, no. 4, pp. 554–559, 2011, doi: 10.1016/j.ecoleng.2010.11.009.

P. Kaur, V. Singh, and A. Arora, “Microbial Concrete—a Sustainable Solution for Concrete Construction,” Appl. Biochem. Biotechnol., vol. 194, no. 3, pp. 1401–1416, 2022, doi: 10.1007/s12010-021-03604-x.

M. Yoshida et al., “Full-Genome Sequence of Bacillus safensis Strain IDN1, Isolated from Comercially Available Natto in Indonesia,” Microbiol. Resour. Announc., vol. 10, no. 15, pp. 1–3, 2021.

A. Lateef, I. A. Adelere, and E. B. Gueguim-Kana, “The biology and potential biotechnological applications of Bacillus safensis,” Biol., vol. 70, no. 4, pp. 411–419, 2015, doi: 10.1515/biolog-2015-0062.

N. A. Diana, R. A. A. Soemitro, J. J. Ekaputri, T. R. Satrya, and D. D. Warnana, “Biogrouting with microbial-induced carbonate precipitation (MICP) for improving the physical and mechanical properties of granular soils potential liquefaction,” MethodsX, vol. 14, no. January, p. 103246, 2025, doi: 10.1016/j.mex.2025.103246.

S. Akçaözoğlu, A. O. Adıgüzel, K. Akçaözoğlu, E. Ü. Deveci, and Ç. Gönen, “Investigation of the bacterial modified waste PET aggregate VIA Bacillus safensis to enhance the strength properties of mortars,” Constr. Build. Mater., vol. 270, 2021, doi: 10.1016/j.conbuildmat.2020.121828.

M. Kanwal, R. A. Khushnood, A. G. Wattoo, and M. Shahid, “Improved anti-corrosion and mechanical aspects of reinforced cementitious composites with bio-inspired strategies,” J. Build. Eng., vol. 70, no. November 2022, p. 105930, 2023, doi: 10.1016/j.jobe.2023.105930.

O. E. Manz, “Coal fly ash: A retrospective and future look,” Fuel, vol. 78, no. 2, pp. 133–136, 1999, doi: 10.1016/S0016-2361(98)00148-3.

American Concrete Institute, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete, ACI 211.1-91 (Reapproved 2002), Farmington Hills, MI, USA.

W. D. Pratiwi, J. J. Ekaputri, and H. Fansuri, “Combination of precipitated-calcium carbonate substitution and dilute-alkali fly ash treatment in a very high-volume fly ash cement paste,” Constr. Build. Mater., vol. 234, p. 117273, 2020, doi: 10.1016/j.conbuildmat.2019.117273.

J. J. Ekaputri et al., “Utilization of high-volume fly ash in pervious concrete mixtures for mangrove conservation,” Resour. Conserv. Recycl. Adv., vol. 21, no. February, p. 200204, 2024, doi: 10.1016/j.rcradv.2024.200204.

Y. Briki, M. Zajac, M. Ben Haha, and K. Scrivener, “Impact of limestone fineness on cement hydration at early age,” Cem. Concr. Res., vol. 147, no. June, p. 106515, 2021, doi: 10.1016/j.cemconres.2021.106515.

S. T. Romadhona and J. J. Ekaputri, “Effect of Mixing Sequence on Green Concrete Using Artifical Coarse Aggregate,” vol. 39, no. 2, pp. 141–146, 2024.

D. F. Syah et al., “Durability of high-volume fly ash concrete incorporating microbes and bottom ash under accelerated chloride attack,” AIP Conf. Proc., vol. 3110, no. 1, 2024, doi: 10.1063/5.0204937.

P. Kara De Maeijer et al., “Effect of ultra-fine fly ash on concrete performance and durability,” Constr. Build. Mater., vol. 263, p. 120493, 2020, doi: 10.1016/j.conbuildmat.2020.120493.

A. K. H. Kwan and J. J. Chen, “Adding fly ash microsphere to improve packing density, flowability and strength of cement paste,” Powder Technol., vol. 234, pp. 19–25, 2013, doi: 10.1016/j.powtec.2012.09.016.

I. Junaidi, J. J. Ekaputri, S. Purnomo, I. H. Sumartono, W. Agustin, and Widi Astuti, “Aplikasi Mikroba Dalam Agregat Buatan Untuk Meningkatkan Kuat Tarik Belah Beton Mengandung Fly Ash,” J. Tek. Sipil, vol. 16, no. 4, pp. 289–301, 2022, doi: 10.24002/jts.v16i4.5677.

A. Bhatt, S. Priyadarshini, A. Acharath Mohanakrishnan, A. Abri, M. Sattler, and S. Techapaphawit, “Physical, chemical, and geotechnical properties of coal fly ash: A global review,” Case Stud. Constr. Mater., vol. 11, p. e00263, 2019, doi: 10.1016/j.cscm.2019.e00263.

R. Vashisht and A. Shukla, “Potential application of bacteria to improve the self-healing and strength of concrete,” J. Build. Pathol. Rehabil., vol. 5, no. 1, pp. 541–544, 2020, doi: 10.1007/s41024-020-0073-5.

S. Jena, B. Basa, and K. Chandra Panda, “A Review on the Bacterial Concrete Properties,” IOP Conf. Ser. Mater. Sci. Eng., vol. 970, no. 1, 2020, doi: 10.1088/1757-899X/970/1/012004.

J. M. Xu, Z. T. Chen, F. Cheng, Z. Q. Liu, and Y. G. Zheng, “Exploring a cellulose-immobilized bacteria for self-healing concrete via microbe-induced calcium carbonate precipitation,” J. Build. Eng., vol. 95, no. May, p. 110248, 2024, doi: 10.1016/j.jobe.2024.110248.

P. K. Mehta and P. J. M. Monteiro, Concrete Microstructure, Properties, and Materials. 2001.

C. X. Qian, T. W. Zheng, and Y. F. Rui, “Living concrete with self-healing function on cracks attributed to inclusion of microorganisms: Theory, technology and engineering applications—A review,” Sci. China Technol. Sci., vol. 64, no. 10, pp. 2067–2083, 2021, doi: 10.1007/s11431-021-1879-6.

J. Zeitouny, W. Lieske, A. Alimardani Lavasan, E. Heinz, M. Wichern, and T. Wichtmann, “Impact of New Combined Treatment Method on the Mechanical Properties and Microstructure of MICP-Improved Sand,” Geotechnics, vol. 3, no. 3, pp. 661–685, 2023, doi: 10.3390/geotechnics3030036.

L. S. Ho and T. P. Huynh, “Long-term mechanical properties and durability of high-strength concrete containing high-volume local fly ash as a partial cement substitution,” Results Eng., vol. 18, no. April, p. 101113, 2023, doi: 10.1016/j.rineng.2023.101113.

S. Oh, G. Oh, G. Hong, Y. C. Choi, and S. Choi, “Thermomechanical properties of high-volume fly ash concrete for application in mass concrete,” Case Stud. Constr. Mater., vol. 22, no. January, p. e04681, 2025, doi: 10.1016/j.cscm.2025.e04681.

N. Yamasamit, P. Sangkeaw, W. Jitchaijaroen, C. Thongchom, S. Keawsawasvong, and V. Kamchoom, “Effect of Bacillus subtilis on mechanical and self-healing properties in mortar with different crack widths and curing conditions,” Sci. Rep., vol. 13, no. 1, pp. 1–12, 2023, doi: 10.1038/s41598-023-34837-x.

Z. Khan and D. Khan, “Reviewing Microbial Calcite Precipitation in Fiber Bioconcrete: Advancing Durability and Sustainability in Construction,” Adv. Biotechnol. Microbiol., vol. 18, no. 03, 2024, doi: 10.19080/aibm.2024.18.555989.

F. A. Shilar, S. V. Ganachari, and V. B. Patil, “A comprehensive review on the strength, durability, and microstructural analysis of bacterial concrete,” Structures, vol. 68, no. July, p. 107078, 2024, doi: 10.1016/j.istruc.2024.107078.

M. K. Rao and D. C. N. S. Kumar, “Durability Assessment of Concrete with Class-F Fly Ash by Chloride Ion Permeability,” Int. J. Recent Technol. Eng., vol. 8, no. 4, pp. 8831–8836, 2019, doi: 10.35940/ijrte.d9470.118419.

M. Uysal and V. Akyuncu, “Durability performance of concrete incorporating Class F and Class C fly ashes,” Constr. Build. Mater., vol. 34, pp. 170–178, 2012, doi: 10.1016/j.conbuildmat.2012.02.075.

N. Parastegari, D. Mostofinejad, and D. Poursina, “Use of bacteria to improve electrical resistivity and chloride penetration of air-entrained concrete,” Constr. Build. Mater., vol. 210, pp. 588–595, 2019, doi: 10.1016/j.conbuildmat.2019.03.150.

B. Tayebani and D. Mostofinejad, “Self-healing bacterial mortar with improved chloride permeability and electrical resistance,” Constr. Build. Mater., vol. 208, pp. 75–86, 2019, doi: 10.1016/j.conbuildmat.2019.02.172.

N. Karimi and D. Mostofinejad, “Bacillus subtilis bacteria used in fiber reinforced concrete and their effects on concrete penetrability,” Constr. Build. Mater., vol. 230, p. 117051, 2020, doi: 10.1016/j.conbuildmat.2019.117051.

S. K. Mondal, C. Clinton, H. Ma, A. Kumar, and M. U. Okoronkwo, “Effect of Class C and Class F Fly Ash on Early-Age and Mature-Age Properties of Calcium Sulfoaluminate Cement Paste,” Sustain., vol. 15, no. 3, 2023, doi: 10.3390/su15032501.

L. S. Ho and T. P. Huynh, “Long-term mechanical properties and durability of high-strength concrete containing high-volume local fly ash as a partial cement substitution,” Results Eng., vol. 18, no. March, p. 101113, 2023, doi: 10.1016/j.rineng.2023.101113.

K. H. Min, H. C. Jung, J. M. Yang, and Y. S. Yoon, “Shrinkage characteristics of high-strength concrete for large underground space structures,” Tunn. Undergr. Sp. Technol., vol. 25, no. 2, pp. 108–113, 2010, doi: 10.1016/j.tust.2009.09.007.

J. Liu, J. Liu, Z. Huang, J. Zhu, W. Liu, and W. Zhang, “Effect of fly ash as cement replacement on chloride diffusion, chloride binding capacity, and micro-properties of concrete in a water soaking environment,” Appl. Sci., vol. 10, no. 18, 2020, doi: 10.3390/APP10186271.

C. Fu, Y. Ling, H. Ye, and X. Jin, “Chloride resistance and binding capacity of cementitious materials containing high volumes of fly ash and slag,” Mag. Concr. Res., vol. 73, no. 2, pp. 55–68, 2021, doi: 10.1680/jmacr.19.00163.




DOI: https://dx.doi.org/10.30659/jacee.8.2.%25p

Refbacks

  • There are currently no refbacks.