INFLUENCE OF POST-IMMEDIATE DENTIN SEALING SURFACE TREATMENT ON SHEAR BOND STRENGHT OF LITHIUM DISILICATE

Angga Novendra Eka Satria*  -  universitas Gadjah Mada, Indonesia
Tri Endra Untara  -  Universitas Gadjah Mada, Indonesia
Andina Widyastuti  -  Universitas Gadjah Mada, Indonesia

(*) Corresponding Author

Immediate Dentin Sealing (IDS) is a conservative procedure performed to protect the exposed dentin surface after tooth preparation, especially for indirect restorations. Indirect restorations are a common procedure in dentistry for replacing the crown structure of teeth, including various types such as jacket crowns, bridge prostheses, endo crowns, inlays, and veneers. The tooth preparation process can expose dentin tubules, which can trigger pulp tissue irritation and the risk of infection, as well as interfere with the adhesion of the final restoration. Post-IDS surface treatment methods can help enhance the bonding strength. The research aims to investigate the influence of different post-IDS surface treatment on the shear bond strength of lithium disilicate.

The study involved 30 upper premolar teeth, divided into three groups. After crown portion buccal surface preparation, all samples underwent IDS, followed by immersion in water and 24-hour incubation. Subsequently, each group received a specific surface treatment: Group I with nylon brush, Group II with nylon brush + pumice, and Group III with sandblasting using aluminum oxide. Lithium disilicate was then cemented on all samples, followed by another 24-hour incubation before shear bond strength testing. Shear bond strength values in MegaPascals (MPa) were analyzed using one-way ANOVA and post hoc Games-Howell tests with a 95% confidence level.

The statistical analysis revealed a significant influence of the different treatment groups on shear bond strength (p < 0.05). In conclusion, this study demonstrates a significant impact of varying post-IDS surface treatments on the shear bond strength of lithium disilicate.

Keywords: IDS, shear bond strength, surface treatment, lithium disilicate

  1. Contrepois, M., Soenen, A., Bartala, M., & Laviole, O. (2013). Marginal adaptation of ceramic crowns: a systematic review. J. Prosthet. Dent., 110(6), 447–454.e10.
  2. Jefferies, S. R., Fuller, A. E., & Boston, D. W. (2015). Preliminary Evidence That Bioactive Cements Occlude Artificial Marginal Gaps. J. Esthet. Restor. Dent., 27(3), 155–166.
  3. Rigos, A. E., Dandoulaki, C., Kontonasaki, E., Kokoti, M., Papadopoulou, L., & Koidis, P. (2019). Effect of immediate dentin sealing on the bond strength of monolithic zirconia to human dentin. Operative Dentistry, 44(4), E167–E179
  4. Leite, M. M., de Souza, D. R., Carvalho, M. A., Lopes, L. G., & de Torres, É. M. (2017). Immediate dentin sealing with self-etch dentin bonding agent for indirect restoration. World J. Dent., 8(6), 490–495.
  5. Samartzi TK, Papalexopoulos D, Sarafianou A, Kourtis S (2021). Immediate Dentin Sealing: A Literature Review. Clin Cosmet Investig Dent.
  6. Grinberga, S., Papia, E., Aleksejuniene, J., Zalite, V., Locs, J., & Soboleva, U. (2023). Effect of Temporary Cement, Surface Pretreatment and Tooth Area on the Bond Strength of Adhesively Cemented Ceramic Overlays—An In Vitro Study. Dent. J., 11(1), 19.
  7. Breemer, C. R. G., Özcan, M., Cune, M. S., Almeida Ayres, A. P., van Meerbeek, B., & Gresnigt, M. M. M. (2019). Effect of immediate dentin sealing and surface conditioning on the microtensile bond strength of resin-based composite to dentin. Oper. Dent., 44(6)
  8. Qanungo, A., Aras, M. A., Chitre, V., Mysore, A., Amin, B., & Daswani, S. R. (2016). Immediate dentin sealing for indirect bonded restorations. In J. Prosthodont. Res. 60 (4), pp. 240–249
  9. Jamal, Z., & Amin, B. (2021). Evaluation of Shear Bond Strength of Two Glass Ceramic Veneers Fabricated by CAD/CAM Technology (In Vitro Study) (Vol. 25).
  10. Januário, A. B. do N., Moura, D. M. D., Araújo, A. M. M. de, Dal Piva, A. M. de O., Özcan, M., Bottino, M. A., & Souza, R. O. A. (2019). Effect of temporary cement removal methods from human dentin on zirconia-dentin adhesion. J. Adhes. Sci. Technol., 33(19), 2112–2127.
  11. Dalby, R., Ellakwa, A., Millar, B., & Martin, F. E. (2012). Influence of immediate dentin sealing on the shear bond strength of pressed ceramic luted to dentin with self-etch resin cement. Int. J. Dent.
  12. Falkensammer, F., Arnetzl, G. V., Wildburger, A., Krall, C., & Freudenthaler, J. (2014). Influence of different conditioning methods on immediate and delayed dentin sealing. J. Prosthet. Dent., 112(2), 204–210.
  13. Caetano, S., Inês & Rua, João & Monteiro, Paulo & Mendes, J.Joao & Polido, Mário. (2016). Influence of aluminum oxide particles on bond strength after immediate dentin sealing. 10.13140/RG.2.2.15034.39362
  14. Levartovsky, S., Ferdman, B., Safadi, N., Hanna, T., Dolev, E., & Pilo, R. (2023). Effect of Silica-Modified Aluminum Oxide Abrasion on Adhesion to Dentin, Using Total-Etch and Self-Etch Systems. Polymers, 15(2)
  15. Özcan, M., & Lamperti, S. (2015). Effect of mechanical and air-particle cleansing protocols of provisional cement on immediate dentin sealing layer and subsequent adhesion of resin composite cement. Journal of Adhesion Science and Technology, 29(24), 2731–2743.
  16. Ding, J., Jin, Y., Feng, S., Chen, H., Hou, Y., & Zhu, S. (2023). Effect of temporary cements and their removal methods on the bond strength of indirect restoration: a systematic review and meta-analysis. In Clin. Oral Investig. (Vol. 27, Issue 1, pp. 15–30).
  17. Gomes, I. A., Mendes, H. G., Filho, E. M. M., de C Rizzi, C., Nina, M. G., Turssi, C. P., Vasconcelos, A. J., Bandeca, M. C., & de Jesus Tavarez, R. R. (2018). Effect of Dental Prophylaxis Techniques on the Surface Roughness of Resin Composites. J Contemp Dent Pract, 19(1), 37–41.
  18. Mishra, A., Koul, M., Upadhyay, V. K., & Abdullah, A. (2020). A comparative evaluation of shear bond strength of seventh- and eighth-generation self-etch dentin bonding agents in primary teeth: An in vitro study. Int. J. Clin. Pediatr. Dent., 13(3), 225–229.
  19. Libonati, A., Di Taranto, V., Memè, L., Gallusi, G., & Campanella, V. (2022). SEM Evaluation of the Hybrid Layer of Two Universal Adhesives on Sound and DI Type II Affected Dentin. Appl. Sci. (Switzerland), 12(22).
  20. Anguswamy, S., & Adeni, M. K. (2022). Evolution of dentin bonding agents. J. glob. oral health, 5, 99–101.
  21. Furuse, A. Y., da Cunha, L. F., Benetti, A. R., & Mondelli, J. (2007). Bond strength of resin-resin interfaces contaminated with saliva and submitted to different surface treatments. Journal of applied oral science : revista FOB, 15(6), 501–505.
  22. Rahim TNA, Mohamad D, Md Akil H, Rahman IA. Water Sorption Characteristics of Restorative Dental Composites Immersed in Acidic Drink. Dental Materials. 2012; 28(6): e63-e70.
  23. Sahebalam, R., Boruziniat, A., Mohammadzadeh, F., & Rangrazi, A. (2018). Effect of the Time of Salivary Contamination during Light Curing on Degree of Conversion and Microhardness of a Restorative Composite Resin. Biomimetics (Basel, Switzerland), 3(3), 23.
  24. Suparno, Nilasary & Nabila, Aulia. (2023). Pengaruh Ph Saliva Terhadap Kekuatan Tarik Diametral Resin Komposit Nanohybrid. B-Dent., 10. 1-8. 10.33854/jbd.v10i1.941.g474.

Lisensi Creative Commons
This work is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.
Contact us: Odonto Dental Journal: Jl. Raya Kaligawe Km.4, PO BOX 1054/SM Semarang, Central Java, Indonesia, 50112. Email: odontodentaljournal@unissula.ac.id
apps