OPTIMASI DAYA LISTRIK TURBIN ANGIN JALAN RAYA DENGAN MENGGUNAKAN FUZZY LOGIC
Abstract
Penelitian ini membahas tentang optimasi daya turbin angin jalan raya. Model ditetapkan sebagai pembangkit listrik tenaga bayu di jalan raya dengan parameter yang ditentukan meliputi: dimensi turbin, rasio gear dan kecepatan angin. Fuzzy digunakan untuk mensimulasikan turbin angin jalan raya sehingga didapatkan daya yang dihasilkan. Hasil menunjukan bahwa dengan dimensi blade 20 cm serta rasio gear 28 dengan kecepatan angin 3 m/s pada analisis matlab hasil 3,67 watt sedangkan pada analisis perhitungan manual 3,75 watt dengan nilai mean squared error (MSE) adalah 0,0064 watt. Untuk dimensi blade 20 cm serta rasio gear 60 dengan kecepatan angin 3 m/s pada analisis matlab hasil 6,417 watt sedangkan pada analisis perhitungan manual 7,13 dengan nilai mean squared error (MSE) adalah 0,9. Karena pembangkit listrik yang dihasilkan paling rendah, turbin angin jalan raya tidak direkomendasikan dipasang di jalan raya Indonesia.
Keyword: Turbin Angin, Rasio Gear, Kecepatan Angin, Fuzzy Logic.
Full Text:
PDFReferences
M. Rumbayan et al., “Diseminasi Pembelajaran Energi Terbarukan Turbin Angin Pada Masyarakat di Desa Kiama Kepulauan Talaud,†vol. 3, no. 3, pp. 79–83.
P. Studi, T. Elektro, F. Teknik, and U. M. Surakarta, “Pemanfaatan energi angin dari pergerakan sepeda motor sebagai sumber energi listrik,†2021.
Е. О. Ð . Ð.Ðœ. Мамонтов, “済無No Title No Title,†J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.
R. H. Muhammad Otong1, Ri Munarto1, “Jurnal Ilmiah Setrum,†J. Control Netw. Syst., vol. 5, no. 2, pp. 1–13, 2017.
R. R. Al Hakim, “Model Energi Indonesia, Tinjauan Potensi Energi Terbarukan untuk Ketahanan Energi di Indonesia: Sebuah Ulasan,†ANDASIH J. Pengabdi. Kpd. Masy., vol. 1, no. 1, pp. 1–11, 2020.
A. Prasetyo et al., “Studi Potensi Penerapan Dan Pengembangan Pembangkit Listrik Tenaga Angin Indonesia,†Progr. Stud. Tek. Elektro, pp. 1–12, 2019.
M. Shoaib, I. Siddiqui, S. Rehman, S. Khan, and L. M. Alhems, “Assessment of wind energy potential using wind energy conversion system,†J. Clean. Prod., vol. 216, pp. 346–360, 2019, doi: 10.1016/j.jclepro.2019.01.128.
K. B. Tawfiq, A. S. Mansour, H. S. Ramadan, M. Becherif, and E. E. El-Kholy, “Wind energy conversion system topologies and converters: Comparative review,†Energy Procedia, vol. 162, pp. 38–47, 2019, doi: 10.1016/j.egypro.2019.04.005.
D. K. Bhutto, J. Ahmed Ansari, S. S. Hussain Bukhari, and F. Akhtar Chachar, “Wind energy conversion systems (WECS) Generators: A review,†2019 2nd Int. Conf. Comput. Math. Eng. Technol. iCoMET 2019, pp. 1–6, 2019, doi: 10.1109/ICOMET.2019.8673429.
M. S. Nazir et al., “Comparison of Small-Scale Wind Energy Conversion Systems: Economic Indexes,†Clean Technol., vol. 2, no. 2, pp. 144–155, 2020, doi: 10.3390/cleantechnol2020010.
J. Wang, D. Bo, X. Ma, Y. Zhang, Z. Li, and Q. Miao, “Adaptive back-stepping control for a permanent magnet synchronous generator wind energy conversion system,†Int. J. Hydrogen Energy, vol. 44, no. 5, pp. 3240–3249, 2019, doi: 10.1016/j.ijhydene.2018.12.023.
M. Jahanpour-Dehkordi, S. Vaez-Zadeh, and J. Mohammadi, “Development of a Combined Control System to Improve the Performance of a PMSG-Based Wind Energy Conversion System Under Normal and Grid Fault Conditions,†IEEE Trans. Energy Convers., vol. 34, no. 3, pp. 1287–1295, 2019, doi: 10.1109/tec.2019.2912080.
A. Darmawan and F. Winjaya, “RANCANG BANGUN TURBIN ANGIN AKSIS VERTIKAL SEBAGAI ALTERNATIF CATU DAYA PADA PERLINTASAN SEBIDANG PERKERETAAPIAN Program Studi Teknologi Elektro Perkeretaapian , Politeknik Perkeretaapian Indonesia Madiun ABSTRAK Peralatan pengaman pintu perlintasan sebid,†J. Perkeretaapi. Indones., vol. III, no. November, 2019.
M. Aditya, S. Aziz, and H. Sukma, “Pemanfaatan energi angin sebagai sumber energi penerangan jalan,†vol. 9, no. 1, pp. 9–16.
A. R. Youssef, A. I. M. Ali, M. S. R. Saeed, and E. E. M. Mohamed, “Advanced multi-sector P&O maximum power point tracking technique for wind energy conversion system,†Int. J. Electr. Power Energy Syst., vol. 107, no. September 2018, pp. 89–97, 2019, doi: 10.1016/j.ijepes.2018.10.034.
H. Ahuja and P. Kumar, “A novel approach for coordinated operation of variable speed wind energy conversion in smart grid applications,†Comput. Electr. Eng., vol. 77, pp. 72–87, 2019, doi: 10.1016/j.compeleceng.2019.05.004.
R. P. Simamora and M. Saukat, “Analisis Potensi Energi Angin Dan Analisis Teknik Pembangkit Listrik Tenaga Bayu Untuk Membangkitkan Energi Listrik ( Studi kasus di Gunung Kincir , Desa Ciheras Kecamatan Cipatujah Kabupaten Tasikmalaya ) Analysis Of Wind Energy Potentials And Technical ,†Semin. Nas. Tek. Elektro, no. 22, pp. 91–100, 2019.
L. Krishnaprasanth, B.; Akshaya, P.R.; Manivannan, “A new fangled highway wind power generation,†Ijraset, vol. 4, no. I, pp. 31–34, 2016.
M. F. Soetanto et al., “Turbin Angin Poros Vertikal Sebagai Alternatif Energi Lampu Penerangan Jalan Umum (PJU),†Ind. Res. Work. Natl. Semin., 2012, [Online]. Available: http://digilib.polban.ac.id/files/disk1/77/jbptppolban-gdl-mfsoetanto-3846-1-turbina-).pdf.
J. H. Lee, Y. T. Lee, and H. C. Lim, “Effect of twist angle on the performance of Savonius wind turbine,†Renew. Energy, vol. 89, no. April 2016, pp. 231–244, 2016, doi: 10.1016/j.renene.2015.12.012.
M. Sharma, “Assesment Of Wind Energy Potential From Highways,†Int. J. Eng. Res. …, vol. 1, no. 8, pp. 1–8, 2012, [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Assesment+Of+Wind+Energy+Potential+From+Highways#0.
C. Lapointe and H. Gopalan, “Numerical Investigation of Mini Wind Turbines Near Highways,†J. Sol. Energy Eng. Trans. ASME, vol. 138, no. 2, pp. 1–4, 2016, doi: 10.1115/1.4032428.
W. Tian, Z. Mao, X. An, B. Zhang, and H. Wen, “Numerical study of energy recovery from the wakes of moving vehicles on highways by using a vertical axis wind turbine,†Energy, vol. 141, no. July, pp. 715–728, 2017, doi: 10.1016/j.energy.2017.07.172.
S. V Saravanan, M. Varatharaj, L. Ayyadurai, S. Palani, and D. Prem, “Design and Fabrication of Vertical Axis Highway Windmill,†no. 2, pp. 27–31, 2013.
A. Muthukumar and M. Balasubramanian, “VAWT Which Makes Use of the Turbulent Winds Generated by the Highway Traffic,†Int. J. Eng. Technol., vol. 4, no. 2, pp. 170–172, 2012, doi: 10.7763/ijet.2012.v4.342.
A. Zarkesh and M. Heidari, “Developing a new application for wind generators in highways,†Proc. - 5th Int. Conf. Comput. Intell. Commun. Syst. Networks, CICSyN 2013, pp. 279–282, 2013, doi: 10.1109/CICSYN.2013.39.
Ismail, E. Pane, and Triyanti, “Optimasi Perancangan Turbin Angin Vertikal Tipe Darrieus Untuk Penerangan Di Jalan Tol,†Semin. Nas. Sains dan Teknol., vol. 1, no. November, p. 12, 2017.
L. Dambrosio, “Data-based fuzzy logic control tenchnique appied to a wind turbine - Synchronous generator system,†AIP Conf. Proc., vol. 2191, no. December, 2019, doi: 10.1063/1.5138786.
S. Syafriyudin, M. Suyanto, S. Subandi, and M. N. W, “Pengujian Karakteristik Turbin Angin Tipe Horizontal Sudu Flat Multiblade Dengan Pengaturan Sudut Sudu,†J. Electr. Power Control Autom., vol. 3, no. 1, p. 15, 2020, doi: 10.33087/jepca.v3i1.34.
B. Rached, M. Elharoussi, and E. Abdelmounim, “Fuzzy logic control for wind energy conversion system based on DFIG,†2019 Int. Conf. Wirel. Technol. Embed. Intell. Syst. WITS 2019, vol. 2, no. 1, pp. 1–6, 2019, doi: 10.1109/WITS.2019.8723722.
M. R. Islam, J. Hasan, M. R. R. Shipon, M. A. H. Sadi, A. Abuhussein, and T. K. Roy, “Neuro Fuzzy Logic Controlled Parallel Resonance Type Fault Current Limiter to Improve the Fault Ride through Capability of DFIG Based Wind Farm,†IEEE Access, vol. 8, pp. 115314–115334, 2020, doi: 10.1109/ACCESS.2020.3000462.
K. A. Naik, C. P. Gupta, and E. Fernandez, “Design and implementation of interval type-2 fuzzy logic-PI based adaptive controller for DFIG based wind energy system,†Int. J. Electr. Power Energy Syst., vol. 115, no. August 2019, p. 105468, 2020, doi: 10.1016/j.ijepes.2019.105468
B. Peng, F. Zhang, J. Liang, L. Ding, Z. Liang, and Q. Wu, “Coordinated control strategy for the short-term frequency response of a DFIG-ES system based on wind speed zone classification and fuzzy logic control,†Int. J. Electr. Power Energy Syst., vol. 107, no. October 2018, pp. 363–378, 2019, doi: 10.1016/j.ijepes.2018.11.010.
A. Gencer, “Analysis and control of fault ride-through capability improvement for wind turbine based on a permanent magnet synchronous generator using an interval type-2 fuzzy logic system,†Energies, vol. 12, no. 12, 2019, doi: 10.3390/en12122289.
S. Santhakumar, I. Palanivel, and K. Venkatasubramanian, “A study on the rotational behaviour of a Savonius Wind turbine in low rise highways during different monsoons,†Energy Sustain. Dev., vol. 40, pp. 1–10, 2017, doi: 10.1016/j.esd.2017.05.002.
A. Putranto, A. Prasetyo, and A. Zatmiko, Rancang Bangun Turbin Angin Vertikal Untuk Penerangan Rumah Tangga. 2011.
Refbacks
- There are currently no refbacks.