' Journal of
Advanced Civil and Environmental Engineering
2 | Vol.1, No.1, 2018, pp 18-29

ISSN: 2599-3356

Vibrational Analysis of Levy-Type Plates by Using SEM

Shota Kiryu! and Buntara Sthenly Gan?*

1Student, Departement of Architecture, Graduate School of Engineering, Nihon University,
1 Nakagawara, Tokusada, Koriyama, Fukushima 963-8642, Japan
2Professor, Departement of Architecture, College of Engineering, Nihon University,
1 Nakagawara, Tokusada, Koriyama, Fukushima 963-8643

* Corresponding author:buntara@arch.ce.nihon-u.ac.jp

(Received: November 16™, 2017 ; Accepted: March 4™, 2018)

ABSTRACT: The use of the frequency-dependent spectral method in structural dynamic related problems
is known to provide very accurate solutions while reducing the number of degree-of-freedom to resolve the
computational and cost drawbacks. This paper investigated the vibrational characteristics of a rigid
pavement road which is modeled by an isotropic Levy-type rectangular thin plates. The Spectral Element
Method (SEM) in the frequency domain is developed to formulate the free vibration problems of the plate.
Transcendental stiffness matrices are well established in vibration, derived from the exact analytical
solutions of the differential equations of a plate element. The present spectral element model has four line-
type degree-of-freedoms (DOF) on each edge of the Levy-type rectangular plate. Natural frequencies are
found using the Wittrick-Williams algorithm. Numerical examples are given to show the effectiveness,
efficiency, and accuracy of the SEM by using one element, unlike the FEM, the SEM gives exact solutions
of the natural frequencies of plates without element discretization procedures.
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INTRODUCTION

Because the dynamic behavior and characteristics of a rigid pavement road are of great
importance in civil engineering, it is necessary to predict them accurately in an efficient and
economical technique. The Finite Element Method (FEM) is probably one of the dominant and
common computation methods available in many fields of science and engineering. The vibration
pattern of a rigid pavement road varies depending on the vibration frequency, and its wavelength
at high frequency is very low. As a sufficiently accurate dynamic response can only be obtained
by taking all necessary high-frequency wave modes, the size of meshes used in the finite element
modeling must be sufficiently small, comparable to the lowest wavelength of the vibrating rigid
pavement model. Since the conventional finite element models are formulated by using frequency
independent polynomial shape functions, the FEM cannot accommodate all necessary high-
frequency wave modes of interest without discretization. Thus the FEM solutions become
inaccurate, especially at high frequencies, where associated wavelengths are very short. The so-
called h-method is one of a well-known scheme for enhancing the FEM accuracy by refining the
meshes. Unfortunately, this scheme will make a massive number of degree of freedoms (DOF),
and hence from the computational aspect, the conventional FEM often becomes prohibitive for
the most complex, rigid plate model.

An alternative scheme to improve the accuracy of the solution is to use the shape functions,
which depend on the vibration frequency of the plate. Hence, the shape functions will be
frequency dependent, and they are known as dynamic shape functions in the literature. As the
dynamic shape functions can readily consider all necessary high-frequency wave modes of

Journal of Advanced Civil and Environmental Engineering 18



Vibrational analysis of Levy-type plates by using SEM

interest, exceptionally highly accurate solutions can be obtained, and the need to refine the meshes
is no longer necessary. This sophisticated concept has directed to the so-called Dynamic Stiffness
Method (DSM) [1-2]. As the exact dynamic stiffness matrix is formulated by using exact dynamic
shape functions, it treats the mass distribution in a structure member implicitly. Thus only one
single element is sufficient for a regular part of a rigid plate model, regardless of its length
between any two successive structural or material discontinuities, to acquire exact solutions. That
is, we no longer need to refine a regular part of a structure into multiple fine meshes. It will
significantly reduce the size of the problem, in other words, the total number of meshes and DOF.
In due course, this will significantly reduce the computation cost and time, together with
improving the solution accuracy by reducing the computer round-off errors. Also, the DSM
provides an infinite number of eigensolutions from the exact dynamic stiffness matrix represented
in terms of a minimum number of DOF. Because the exact dynamic stiffness matrices are stiffness
formulated (as the conventional finite element stiffness matrices are), they can be assembled in
an analogous way to that used in the FEM. Thus, the meshing and assembly features of the FEM
can be applied similarly to the DSM.

In Spectral Analysis Method (SAM) [3], the solutions to the governing differential equations
are represented by the superposition of an infinite number of wave modes of different frequencies
(or periods). The scheme related to the continuous Fourier transform of the solutions. This
approach involves determining an infinite set of spectral components (or Fourier coefficients) in
the frequency domain and performing the Inverse Fourier transform to reconstruct the time
histories of the solutions. The continuous Fourier transform is feasible only when the function is
mathematically simple. Thus, instead of using the continuous Fourier transform, the Discrete
Fourier Transform (DFT) is widely used in practice.

Narayanan and Beskos [4] combined the features of the DSM with those of the SAM by
introducing the fundamental concept of the Spectral Element Method (SEM). As illustrated in
Fig. 1., the SEM can be considered as the combination of the main features of the conventional
FEM, DSM and SAM. The key features of each method can be summarized as follows:

a Key features of FEM : Meshing (spatial discretization) and the assembly of finite elements.

 DSM SAM
Exactness and Wave modes
/ minimumnumber . superpositionvia |

| of DOFs ,~ ™\ FFT&IFFT |
(SEM |

FEM
Spanial
discretization and
. assembly procedure -

Fig. 1. Main features of the SEM

b  Key features of DSM: Accuracy from the exact dynamic stiffness matrix formulated by a
minimum number of DOF.
¢ Key features of SAM: Superposition of wave modes via DFT theory and FFT algorithm.
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In this study, the free vibrations of rectangular plates are analyzed. The Levy-type plate theory
is based on the first order shear deformation plate theory and the governing equations which can
be obtained from both the Maxwell equation and Hamilton principle. The exact natural
frequencies of the free vibration plate are investigated. Comparison studies are performed to
verify the validity of the SEM results. Moreover, the closed-form solutions of isotropic plate
based on the Classical Plate Theory (CPT) [5-7] are also referred for the verification purpose. The
effects of plate size aspect ratio on the natural frequencies of the isotropic Levy-type plates are
studied and discussed.

LEVY-TYPE PLATE
The levy-type plate is defined by a rectangular plate with at least two parallel sides simply
supported and arbitrary at the other edges boundary conditions. The governing equations yield
to the coupled partial differential equations which can be decoupled by introducing auxiliary
functions. The decoupled equations can be solved analytically by using the SEM.

Equation of Motion of a Levy-type plate

Figure 2. shows a rectangular Levy-type plate with two simply supported sides parallel to the
x-axis and the other two arbitrary boundary conditions at the opposite sides parallel to the y-axis.
y
P4

Fig. 2. Levy-type rectangular plate in the FEM scheme

The Levy-type plate has the size of Lx and Ly in the x- and y- directions, respectively. The
homogeneous partial differential equations of small transverse vibration w(x,y,t) of the plate is
represented by the CPT,

4 4 4 3 2. 2.
D(a\iv+2 62W2+a\ivj+ph\7\'/—ph [6\;V+8v2v]20 @
OX ox“oy- oy 12 { ox° oy
where, is the thinness, is the mass density and is the bending rigidity which is defined by
. ER
1208’
third terms in Eq. (1) stand for the translation and rotary inertia of the plate, respectively.

E is the elastic modulus and v is the Poisson’s ratio of the plate. The second and

Spectral Element Solution

Assuming the dynamic response of the plate in n-domain spectral in the following form:

WX Y. == D W (Vi ) @
WX Y50 = X, (00, (9) ©

Where W, (x, y; @,) is the spectral components of the w(x, y,t), N is the sampling number and
o, is the n-th natural frequency. The spectral component W.(X,y;w®,) is obtained from
multiplication of X (x) and Y,(y) which are the displacement functions in x- and y- directions,
respectively.
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By assuming the Y, (y)solution in m-domain spectral form as :

Y, (y:k

ynm)

where, M is the sampling humber and

K _mﬂ'
L

ynm
y

_iiY eikynmy
- M e nm

(m=1,2,3,...)

Substituting Eqg. (4) into the spectral component of Eq. (3), results in

W, (X, y;0,) =

with,

an (X; I(ynm’

Substituting Eq. (6) into Eq. (2), results in,

W(X, y,t) =

:_z[

The derivations of W__(X,y;
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,,)atnand m in Eq. (8) with respect to x, y and t are given as,
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(®)

(6)
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Herewith () :% its derivation operator with respect to the x-axis. Then, the homogeneous
X

differential partial equation of Eq. (1) can be expressed as follow,

D{W"" 2k2 W" +k* W }

ynm" 'nm ynm nm

h
> phW__ + P
nmp nm 12

3

a)r?m (W “ kjnm nm ) = 0
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Assuming the spectral solution in the form

W, (%K s @) =W, =C, € (10)

ynm ?

moreover, its derivatives as follow,

Wn”m = (kfnm ) mm = kfnm nm and W “ (k:nm )Cnmei o k:nm nm*
Substituting Eq. (10) into Eq. (9), results in
3 3
I(;‘nm + 2kfnm k2nm — Oy, ﬂ + k4nm - a)rfm ﬂ k2nm - a)an p_h =0 (11)
g 24D y 12D D

defining the translation and rotary inertia components as A, and B, , respectively, as

2 2ph 2 _ 2Ph3
A=) — B =0

"D " " "12D
Equation (11) becomes,
4 2 2 1 4 2 2
k>(nm + 2kxnm (kynm - E Bn + I(ynm - Bn kynm A] =0 (12)

Four solutions wavenumbers k. of Eq. (12) are given by

K. = 1\sz2 a2, —2J4AN +BF kxan:%\IZBZ aK2, —2,J4A7 + B

(13)
M \/ZBZ a2 +2JAN B Kk, =%\/ZBZ aK2, +2J4A7 + B
The general solution of Eq. (10) can be written as
an (X1 kynm ’ a)n) = Cnmle_ikmmlx + Cnmze_lkmmZX + Cnm3e_lkxnmsx + C e o (14)
alternatively, in matrix notation
an(X; I(ynm 1 a)nm) = E (X kynm' nm) Cnm (15)

where

Enm (X; kynm , a)nm) — [efikxnmlx efikxnmz)< efikxnmiix efikxnmzt)< :I
T
Cnm = [Cnml Cnm2 Cnm3 Cnm4]

Simply supported Levy-type plate

Per definition, the Levy-type plate is defined by a rectangular plate with at least two parallel
sides simply supported and arbitrary at the other edges boundary conditions. For a simply
supported condition at all sides, the spectral nodal DOF with the boundary conditions at x=0 and
x=Lx in the frequency w-domain is given as follow

W, (Y;@,) W, (0,y;m,)
10y (yim,) ~ W, (0,y;®,)

G ()= W, (yi@,) [ Wy (Lo Vi@,) 4o
®2n(y;wn) Wn’(Lx'y;a)n)
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Representing the boundary conditions in spectral forms of the wavenumber ky-domain as

()] [ W
) 1 o ®nm

ien)|_ L3 O a7)
Wo, (yi@,)| MW, e

(vie,) 0

e_ikynmy

e —iKynm Y

2nm

By substituting Egs. (6) and (17) into Eq. (16),

W1nm (kynm ' a)nm ) (O' kynm ' nm )
C) k ' Whm O! k nm+ Pnm
dnm (kynm 1 O ) = " ( " “ ) = ( ' ) (18)
Wan (kynm ! a)nm ) ( Lx ’ kynm ' %nm )
®2nm (kynm ! a)nm ) ( Lx ’ kynm ' %nm )
where
[ 1 1 1 1
_ _ikxnml ik><nm2 ik><nm3 _ikxnm4
(I)nm (kynm o ) - enml enm2 enm3 enm4 (20)
__ikxnmlenml _ikxnmzean _ikxnm3enm3 _ikxnm4enm4
with
ey =€ (j=12,3,4) (21)

By substituting Eq. (6) into the resultant bending moments and transverse shearing force at x-
boundary condition,

2
Mo (X, Y @ ) = D(a V\Zln +v%}
OX oy
oW oW, h® (oW @2
Qun (X Y;0,)=—D| —2+(2-v)—5 + P (—J
OX oxoy 12 \ ox
We can obtain,
1 4 —iKynmy
Mxxn(x Y Oy :MZ xxnm X’kynm’ m)e
. ; (23)
—ik
szn X Yo, _Mz xznm X ynm’ m)e m?
where
Mxxnm(x1 ynm’ ) D(W” _Vk)?nm nm)
(24)

3
sznm(x.k a)nm):_D|: m (2 V)k2 W/ :I ﬂWr

1 ynm ynm* ¥nm 12 nm
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Representing the spectral components (in the frequency w-domain) of the resultant transverse
shearing force and bending moment as

Q. (Vi) ~Qun (0, Y; @4y

Mln(y;a)n) Mxxn( )
f = = 25
n(wn) QZn(y;a)n) szn(Lx’y ) ( )
MZn(y;a)n) Mxxn(Lx’y’ nm)

Represent the resultant transverse shear force and bending moment in the spectral forms in the
wavenumber ky-domain as

) anm e*ikynmy
) Mlnm
QU (Vi) [ M5 | Qe
M ) M 7ikynmy

e ymy

(26)

e

2nm
By substituting Egs. (24) and (26) into Eq. (25), we can obtain
anm kynm ) _sznm (07 kynm’ nm )

(
Mam (Kyn @i ) | | M (0 Ky @1
(

fnm (kynm 1O ) = " = (27)

Qe (Kys @) | |~ Q (L K @)
Moo (Kyns @in )| | Mg (L Ky s @n )
Substitution of Eg. (15) into the right-hand side of Eq. (27) gives
M 0 (6 Ky @) = D[ Ery (X) = vk B () [ €
3 (28)

sznm(X;kV“m’a}"m) |:EW (X) (2 V)kjnmE;m(X)J _a)nm%E' (X)Cnm

Applying Eg. (28) on the right-hand side of Eq. (27) gives
En.(0)—(2- v)k2 E' (0)-B?

ynm —nm
Er (0) = VKo (0)

fnm(kyﬂm’a)nm):D Em (L) (2 V)k2 Er (L) Bn nm(l—) nm (29)

ynm —nm

Er (L) —vk3, En (L))

0)

n nm(

By using Eq. (15), the Eq. (29) can be written as

fnm (kynm 1 a)nm ) = Gnm (kynm ' a)nm ) Cnm (30)

where
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Gon (Km0 ) =
I ikxnml[ xnml + (2 V)kynm } ikxnmzl: xnm2 + (2 V)kynm :I

5 ~(Kiy + V) ~(Kiz + VK )
1Kyt [ Koy + (2= V)Ki + B [y 1Ko [ Kl + (2= V)KZ + BY ] €0
~(Kis + VKL ) B ~(Kiz + VK ) €2 31)
1K s [ Ks + (2= V)K2, + BY | iK o [ K2ma + (2= VK, +B2] ]

(kfnm3 + sz ) (kfnm4 + ijnm )
ikxnms[ xnm3 + (2 V)kynm :I enm3 iI(><nm4 ': xnmé4 + (2 V)kynm :| enm4
~(Kf s + VK K2 e + VK

xnm3 ynm) nm3 ( xnmé4 ynm) nm4

The constant vector ¢, can be eliminated from Eq. (30) by using Eq. (19) to obtain the spectral
element equation for the Levy-type plate element as
Fin (Kyom: @i ) = G (K @1 ) S
=G Ky @ur ) @y (K @) A (Kyps o) (32)
=S(Kyn+ @y ) oy (Ko s o )
Where
S(Kym+ @i ) = G (Kypms @nry ) @ (Kyns @a )
The size of the matrix S(kynm,a)nm) is 4x4 that is the function of natural frequency w,,and
wavenumber k. In a similar way to the FEM, this spectral element matrix of the Levy-type

plate element can be discretized and assembled in the x-direction to form a global stiffness matrix
system.

LEVY-TYPE PLATE

Free Vibration

Consider the geometry of two different aspect ratio of width and length of Levy-type plates
as shown in Fig. 3. The following isotropic material properties of the plate are used in the
calculation: elastic modulus E =1; Poisson’s ratiov =0.3; and mass density o =1.0. The shear

modulus is computed from G = 2(15 ") The plates are restrained at both opposite parallel sides
as simply supported boundary conditions.
i .xy Le=1 L=v2
h=L,/10

[
——————— Lo~~~ > x

Fig. 3. Levy-type rectangular plate in the FEM scheme
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CPT with rotary inertia, B, =0 CPT without rotary inertia, B, =0

Wnn Wmn

Winn Wmn

ynm’ mn”

log | S(k

J 10"\0\
0

Wnn Wmn

Fig. 4. SEM computed normalized natural frequencies, @,, = @,,h\/p/G of a square plate
(L/L,=1,L,/h=10)
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CPT with rotary inertia, B, #0 CPT without rotary inertia, B, =0

0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

&
€

0.9

0.9

Fig. 5. SEM computed normalized natural frequencies, a@,, = @,,h\/p/G of a rectangular plate
(L/L, =v2,L,/h=10)

The natural frequencies of the plates are obtained from solving the eigenvalue problem of the
spectral element model which can be reduced from Eg. (32) to be

fnm (kynm 1 a)nm) = S(kynm ! a)nm )dnm (kynm 1 a)nm ) = O (33)
The eigenfrequencies o, (m=12,3..;n=12,3...)are determined by using the condition that the
determinant of S(k,,,,,, )is zero at o =w,, , that is,

‘S(kynm’a)nm) :O (34)
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The Wittrick-Williams algorithm [8] is implemented to calculate the natural frequencies of the
plates. The results of normalized natural frequencies of the plates are compared with the CPT
solutions [5-7] in Figs. 4-5 and Tables 1-2 for with or without taking into account the rotary inertia.

Table 1. Comparison of normalized natural frequencies, @,, = @,,,h/o/G of a square plate

(L/L, =1,L,/h=10)

With rotary inertia, B, #0

Without rotary inertia,

B =0
m n
CPT[5-6] SEM CPT[5-6] SEM

11 0.0955 0.0955 0.0963 0.0963
1 2 0.2360 0.2360 0.2408 0.2408
2 2 0.3732 0.3732 0.3853 0.3853
1 3 0.4629 0.4629 0.4816 0.4816
2 3 0.5951 0.5951 0.6261 0.6261
1 4 0.7668 0.7668 0.8187 0.8187
3 3 0.8090 0.8090 0.8669 0.8669
2 4 0.8926 0.8926 0.9632 0.9632
3 4 1.0965 1.0965 1.2040 1.2040
1 5 1.1365 1.1365 1.2521 1.2521
2 5 1.2549 1.2549 1.3966 1.3966
4 4 1.3716 1.3712 1.5411 1.5411
3 5 1.4475 1.4475 1.6374 1.6374

Table 2. Comparison of normalized natural frequencies, @,

m

(L/L, =+2,L,/h=10)

L =w,,h{p!G of arectangle plate

With rotary inertia, B, #0

Without rotary inertia,

B, =0
m n
CPT[5-6] SEM CPT[5-6]° SEM

1 1 0.07180 0.07180 0.07224 0.07224
1 2 0.14273 0.14273 0.14448 0.14448
2 1 0.21281 0.21281 0.21671 0.21671
1 3 0.25908 0.25908 0.26487 0.26487
2 2 0.28207 0.28207 0.28895 0.28895
2 3 0.39575 0.39575 0.40935 0.40935
1 4 0.41822 0.41822 0.43343 0.43343
31 0.44062 0.44062 0.45751 0.45751
3 2 0.50729 0.50729 0.52974 0.52974
2 4 0.55133 0.55133 0.57790 0.57790
3 3 0.61680 0.61680 0.65014 0.65014
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With rotary inertia, B, #0 Without rotary inertia,

B =0
m n
CPT[5-6] SEM CPT[5-6]° SEM
1 5 0.61680 0.61680 0.65014 0.65014
2 5 0.74563 0.74563 0.79462 0.79462

®From the results quoted in Ref.[5] which have typographical errors in the placement of
decimal symbol. The values of m and n are interchanged.

DISCUSSION AND RESULTS

Numerical results from the CPT and SEM are depicted in Figs. 4-5 and tabulated in Tables 1-2.
The results obtained using the SEM are found to give excellent exact values compared with the CPT
values reported. Numerical examples are given to show the effectiveness, efficiency, and accuracy of
the SEM by using only one element, unlike the FEM, the SEM gives exact solutions of the natural
frequencies of plates without element discretization procedures.

The figures present the results of consecutive natural frequencies of m and its corresponding n
modes of both plates with and without taking into account the rotary inertia. By taking into account the
rotary inertia term in the plate equation, higher natural frequencies are obtained regardless of the
vibration modes.

The SEM has shown that the transcendental stiffness matrices which are well established in free
vibration problems can be derived from the exact analytical solutions of the differential equations of a
plate element. The effectiveness of the Wittrick-Williams algorithm also has been proved suitable for
use in the SEM formulation, as opposed to the approximation method by using the FEM.

Depends on the fundamental theory and concept of the plate element being considered, the SEM
can be established accordingly to give the exact solution by using the least number of element.
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