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ABSTRACT: The use of the frequency-dependent spectral method in structural dynamic related problems 

is known to provide very accurate solutions while reducing the number of degree-of-freedom to resolve the 

computational and cost drawbacks. This paper investigated the vibrational characteristics of a rigid 

pavement road which is modeled by an isotropic Levy-type rectangular thin plates. The Spectral Element 

Method (SEM) in the frequency domain is developed to formulate the free vibration problems of the plate. 

Transcendental stiffness matrices are well established in vibration, derived from the exact analytical 

solutions of the differential equations of a plate element. The present spectral element model has four line-

type degree-of-freedoms (DOF) on each edge of the Levy-type rectangular plate. Natural frequencies are 

found using the Wittrick-Williams algorithm. Numerical examples are given to show the effectiveness, 

efficiency, and accuracy of the SEM by using one element, unlike the FEM, the SEM gives exact solutions 

of the natural frequencies of plates without element discretization procedures. 
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INTRODUCTION 

Because the dynamic behavior and characteristics of a rigid pavement road are of great 

importance in civil engineering, it is necessary to predict them accurately in an efficient and 

economical technique. The Finite Element Method (FEM) is probably one of the dominant and 

common computation methods available in many fields of science and engineering. The vibration 

pattern of a rigid pavement road varies depending on the vibration frequency, and its wavelength 

at high frequency is very low. As a sufficiently accurate dynamic response can only be obtained 

by taking all necessary high-frequency wave modes, the size of meshes used in the finite element 

modeling must be sufficiently small, comparable to the lowest wavelength of the vibrating rigid 

pavement model. Since the conventional finite element models are formulated by using frequency 

independent polynomial shape functions, the FEM cannot accommodate all necessary high-

frequency wave modes of interest without discretization. Thus the FEM solutions become 

inaccurate, especially at high frequencies, where associated wavelengths are very short. The so-

called h-method is one of a well-known scheme for enhancing the FEM accuracy by refining the 

meshes. Unfortunately, this scheme will make a massive number of degree of freedoms (DOF), 

and hence from the computational aspect, the conventional FEM often becomes prohibitive for 

the most complex, rigid plate model. 

An alternative scheme to improve the accuracy of the solution is to use the shape functions, 

which depend on the vibration frequency of the plate. Hence, the shape functions will be 

frequency dependent, and they are known as dynamic shape functions in the literature. As the 

dynamic shape functions can readily consider all necessary high-frequency wave modes of 
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interest, exceptionally highly accurate solutions can be obtained, and the need to refine the meshes 

is no longer necessary. This sophisticated concept has directed to the so-called Dynamic Stiffness 

Method (DSM) [1-2]. As the exact dynamic stiffness matrix is formulated by using exact dynamic 

shape functions, it treats the mass distribution in a structure member implicitly. Thus only one 

single element is sufficient for a regular part of a rigid plate model, regardless of its length 

between any two successive structural or material discontinuities, to acquire exact solutions. That 

is, we no longer need to refine a regular part of a structure into multiple fine meshes. It will 

significantly reduce the size of the problem, in other words, the total number of meshes and DOF. 

In due course, this will significantly reduce the computation cost and time, together with 

improving the solution accuracy by reducing the computer round-off errors. Also, the DSM 

provides an infinite number of eigensolutions from the exact dynamic stiffness matrix represented 

in terms of a minimum number of DOF. Because the exact dynamic stiffness matrices are stiffness 

formulated (as the conventional finite element stiffness matrices are), they can be assembled in 

an analogous way to that used in the FEM. Thus, the meshing and assembly features of the FEM 

can be applied similarly to the DSM. 

In Spectral Analysis Method (SAM) [3], the solutions to the governing differential equations 

are represented by the superposition of an infinite number of wave modes of different frequencies 

(or periods). The scheme related to the continuous Fourier transform of the solutions. This 

approach involves determining an infinite set of spectral components (or Fourier coefficients) in 

the frequency domain and performing the Inverse Fourier transform to reconstruct the time 

histories of the solutions. The continuous Fourier transform is feasible only when the function is 

mathematically simple. Thus, instead of using the continuous Fourier transform, the Discrete 

Fourier Transform (DFT) is widely used in practice.  

Narayanan and Beskos [4] combined the features of the DSM with those of the SAM by 

introducing the fundamental concept of the Spectral Element Method (SEM). As illustrated in 

Fig. 1., the SEM can be considered as the combination of the main features of the conventional 

FEM, DSM and SAM. The key features of each method can be summarized as follows: 

a Key features of FEM : Meshing (spatial discretization) and the assembly of finite elements. 

 

 
 

Fig. 1. Main features of the SEM 
 

b Key features of DSM: Accuracy from the exact dynamic stiffness matrix formulated by a 

minimum number of DOF. 

c Key features of SAM: Superposition of wave modes via DFT theory and FFT algorithm. 
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In this study, the free vibrations of rectangular plates are analyzed. The Levy-type plate theory 

is based on the first order shear deformation plate theory and the governing equations which can 

be obtained from both the Maxwell equation and Hamilton principle. The exact natural 

frequencies of the free vibration plate are investigated. Comparison studies are performed to 

verify the validity of the SEM results. Moreover, the closed-form solutions of isotropic plate 

based on the Classical Plate Theory (CPT) [5-7] are also referred for the verification purpose. The 

effects of plate size aspect ratio on the natural frequencies of the isotropic Levy-type plates are 

studied and discussed. 

 

LEVY-TYPE PLATE 

The levy-type plate is defined by a rectangular plate with at least two parallel sides simply 

supported and arbitrary at the other edges boundary conditions. The governing equations yield 

to the coupled partial differential equations which can be decoupled by introducing auxiliary 

functions. The decoupled equations can be solved analytically by using the SEM. 

Equation of Motion of a Levy-type plate  

Figure 2. shows a rectangular Levy-type plate with two simply supported sides parallel to the 

x-axis and the other two arbitrary boundary conditions at the opposite sides parallel to the y-axis. 

 
 

Fig. 2. Levy-type rectangular plate in the FEM scheme 

 

The Levy-type plate has the size of Lx and Ly in the x- and y- directions, respectively. The 

homogeneous partial differential equations of small transverse vibration w(x,y,t) of the plate is 

represented by the CPT, 
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where,  is the thinness,  is the mass density and is the bending rigidity which is defined by 
3

312(1 )
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D





, E is the elastic modulus and v is the Poisson’s ratio of the plate. The second and 

third terms in Eq. (1) stand for the translation and rotary inertia of the plate, respectively.  

 

 Spectral Element Solution 

Assuming the dynamic response of the plate in n-domain spectral in the following form: 
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Where ( , ; )n nW x y   is the spectral components of the ( , , )w x y t , N is the sampling number and 

n is the n-th natural frequency. The spectral component ( , ; )n nW x y  is obtained from 

multiplication of ( )nX x  and ( )nY y  which are the displacement functions in x- and y- directions, 
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By assuming the ( )nY y solution in m-domain spectral form as :  

1

1
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M
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n ynm nm
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        (4) 

where, M is the sampling number and 
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Substituting Eq. (4) into the spectral component of Eq. (3), results in 
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with, 
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Substituting Eq. (6) into Eq. (2), results in, 
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The derivations of  ( , ; )nm nmW x y  at n and m in Eq. (8) with respect to x, y and t are given as,  
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Herewith  
 d

x
 


 its derivation operator with respect to the x-axis. Then, the homogeneous 

differential partial equation of Eq. (1) can be expressed as follow,            

   
3

2 4 2 2 22 0
12

nm ynm nm ynm nm nm nm nm nm ynm nm

h
D W k W k W hW W k W


         

  

(9) 

 

 

 



Shota Kiryu and Buntara Sthenly Gan 

22 

 

Journal of Advanced Civil and Environmental Engineering 

 

Assuming the spectral solution in the form 

( ; , ) xnmik x

nm ynm nm nm nmW x k W c e 
       (10) 

moreover, its derivatives as follow, 
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Substituting Eq. (10) into Eq. (9), results in 
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defining the translation and rotary inertia components as
nA and

nB , respectively, as 
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Equation (11) becomes, 
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Four solutions wavenumbers 
xnmk  of Eq. (12) are given by 
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The general solution of Eq. (10) can be written as 
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alternatively, in matrix notation 
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where 
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Simply supported Levy-type plate 

Per definition, the Levy-type plate is defined by a rectangular plate with at least two parallel 

sides simply supported and arbitrary at the other edges boundary conditions. For a simply 

supported condition at all sides, the spectral nodal DOF with the boundary conditions at x=0 and 

x=Lx in the frequency ω-domain is given as follow  
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Representing the boundary conditions in spectral forms of the wavenumber ky-domain as 
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By substituting Eqs. (6) and (17) into Eq. (16), 
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By substituting Eq. (6) into the resultant bending moments and transverse shearing force at x- 
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we can obtain, 
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Representing the spectral components (in the frequency ω-domain) of the resultant transverse 

shearing force and bending moment as 
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Represent the resultant transverse shear force and bending moment in the spectral forms in the 

wavenumber ky-domain as 
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By substituting Eqs. (24) and (26) into Eq. (25), we can obtain 
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Substitution of Eq. (15) into the right-hand side of Eq. (27) gives 
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Applying Eq. (28) on the right-hand side of Eq. (27) gives 
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  (29) 

By using Eq. (15), the Eq. (29) can be written as 

   , ,nm ynm nm nm ynm nm nmk k f G c       (30) 

 

where 



Journal of Advanced Civil and Environmental Engineering 

 

Vibrational analysis of Levy-type plates by using SEM 

25 

 

 

   

 

2 2 2 2 2 2

1 1 2 2

2 2 2 2

1 2

2 2 2 2 2 2

1 1 1 2 2 2

2 2 2

1 1 2

,

(2 ) (2 )

(2 ) (2 )

nm ynm nm

xnm xnm ynm n xnm xnm ynm n

xnm ynm xnm ynm

xnm xnm ynm n nm xnm xnm ynm n nm

xnm ynm nm xnm

k

ik k k B ik k k B

k k k k
D

ik k k B e ik k k B e

k k e k



 

 

 

 



           

   

           

   

G

 

   

 

2

2

2 2 2 2 2 2

3 3 4 4

2 2 2 2

3 4

2 2 2 2 2 2

3 3 3 4 4 4

2 2

3 3

(2 ) (2 )

...
(2 ) (2 )

ynm nm

xnm xnm ynm n xnm xnm ynm n

xnm ynm xnm ynm

xnm xnm ynm n nm xnm xnm ynm n nm

xnm ynm nm

k e

ik k k B ik k k B

k k k k

ik k k B e ik k k B e

k k e k

 

 

 












           

   

           

   2 2

4 4xnm ynm nmk e










  (31) 

The constant vector 
nmc  can be eliminated from Eq. (30) by using Eq. (19) to obtain the spectral 

element equation for the Levy-type plate element as 
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   (32) 

Where 

     1, , ,ynm nm nm ynm nm nm ynm nmk k k  S G Φ  

The size of the matrix  ,ynm nmk S  is 4 4  that is the function of natural frequency 
nm and 

wavenumber 
ynmk . In a similar way to the FEM, this spectral element matrix of the Levy-type 

plate element can be discretized and assembled in the x-direction to form a global stiffness matrix 

system. 

 

LEVY-TYPE PLATE 

Free Vibration 

Consider the geometry of two different aspect ratio of width and length of Levy-type plates 

as shown in Fig. 3. The following isotropic material properties of the plate are used in the 

calculation: elastic modulus 1E  ; Poisson’s ratio 0.3  ; and mass density 1.0  . The shear 

modulus is computed from 
 2 1

E
G





. The plates are restrained at both opposite parallel sides 

as simply supported boundary conditions. 

 
Fig. 3. Levy-type rectangular plate in the FEM scheme 

 

Lx=1

x

z y
Lx=√2

h=Ly /10

square rectangular
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CPT with rotary inertia, 0nB   CPT without rotary inertia, 0nB   

1m   

  

2m   

  

3m   

  

4m   

  

Fig. 4. SEM computed normalized natural frequencies, /mn mnh G    of a square plate 

( / 1 , / 10x y yL L L h  ) 
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CPT with rotary inertia, 0nB   CPT without rotary inertia, 0nB   

1m   

  

2m   

  

3m   

  

Fig. 5. SEM computed normalized natural frequencies, /mn mnh G    of a rectangular plate 

( / 2 , / 10x y yL L L h  ) 

 

The natural frequencies of the plates are obtained from solving the eigenvalue problem of the 

spectral element model which can be reduced from Eg. (32) to be 

     , , , 0nm ynm nm ynm nm nm ynm nmk k k   f S d     (33) 

The eigenfrequencies  1,2,3...; 1,2,3...nm m n   are determined by using the condition that the 

determinant of  ,ynm nmk S is zero at nm  , that is, 

 , 0ynm nmk  S        (34) 
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The Wittrick-Williams algorithm [8] is implemented to calculate the natural frequencies of the 

plates. The results of normalized natural frequencies of the plates are compared with the CPT 

solutions [5-7] in Figs. 4-5 and Tables 1-2 for with or without taking into account the rotary inertia. 

Table 1. Comparison of normalized natural frequencies, /mn mnh G    of a square plate 

( / 1 , / 10x y yL L L h  ) 

m n 

With rotary inertia, 0nB   
Without rotary inertia, 

0nB   

CPT[5-6] SEM CPT[5-6] SEM 

1 1 0.0955 0.0955 0.0963 0.0963 

1 2 0.2360 0.2360 0.2408 0.2408 

2 2 0.3732 0.3732 0.3853 0.3853 

1 3 0.4629 0.4629 0.4816 0.4816 

2 3 0.5951 0.5951 0.6261 0.6261 

1 4 0.7668 0.7668 0.8187 0.8187 

3 3 0.8090 0.8090 0.8669 0.8669 

2 4 0.8926 0.8926 0.9632 0.9632 

3 4 1.0965 1.0965 1.2040 1.2040 

1 5 1.1365 1.1365 1.2521 1.2521 

2 5 1.2549 1.2549 1.3966 1.3966 

4 4 1.3716 1.3712 1.5411 1.5411 

3 5 1.4475 1.4475 1.6374 1.6374 

 

Table 2. Comparison of normalized natural frequencies, /mn mnh G    of a rectangle plate 

( / 2 , / 10x y yL L L h  ) 

m n 

With rotary inertia, 0nB   
Without rotary inertia, 

0nB   

CPT[5-6] SEM CPT[5-6]b SEM 

1 1 0.07180 0.07180 0.07224 0.07224 

1 2 0.14273 0.14273 0.14448 0.14448 

2 1 0.21281 0.21281 0.21671 0.21671 

1 3 0.25908 0.25908 0.26487 0.26487 

2 2 0.28207 0.28207 0.28895 0.28895 

2 3 0.39575 0.39575 0.40935 0.40935 

1 4 0.41822 0.41822 0.43343 0.43343 

3 1 0.44062 0.44062 0.45751 0.45751 

3 2 0.50729 0.50729 0.52974 0.52974 

2 4 0.55133 0.55133 0.57790 0.57790 

3 3 0.61680 0.61680 0.65014 0.65014 
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m n 

With rotary inertia, 0nB   
Without rotary inertia, 

0nB   

CPT[5-6] SEM CPT[5-6]b SEM 

1 5 0.61680 0.61680 0.65014 0.65014 

2 5 0.74563 0.74563 0.79462 0.79462 
bFrom the results quoted in Ref.[5] which have typographical errors in the placement of 

decimal symbol. The values of m and n are interchanged. 

 

DISCUSSION AND RESULTS 

Numerical results from the CPT and SEM are depicted in Figs. 4-5 and tabulated in Tables 1-2. 

The results obtained using the SEM are found to give excellent exact values compared with the CPT 

values reported. Numerical examples are given to show the effectiveness, efficiency, and accuracy of 

the SEM by using only one element, unlike the FEM, the SEM gives exact solutions of the natural 

frequencies of plates without element discretization procedures. 

The figures present the results of consecutive natural frequencies of m and its corresponding n 

modes of both plates with and without taking into account the rotary inertia. By taking into account the 

rotary inertia term in the plate equation, higher natural frequencies are obtained regardless of the 

vibration modes. 

The SEM has shown that the transcendental stiffness matrices which are well established in free 

vibration problems can be derived from the exact analytical solutions of the differential equations of a 

plate element. The effectiveness of the Wittrick-Williams algorithm also has been proved suitable for 

use in the SEM formulation, as opposed to the approximation method by using the FEM. 

Depends on the fundamental theory and concept of the plate element being considered, the SEM 

can be established accordingly to give the exact solution by using the least number of element. 
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