Prediksi Penghematan Biaya Listrik Berdasarkan Global Horizontal Irradiance (GHI) Menggunakan Model Long Short Term Memory Network (LSTM)

Muhammad Ilham Pradipta, Sam Farisa Chaerul Haviana

Abstract


Energi surya semakin diakui sebagai solusi utama dalam memenuhi kebutuhan energi global yang terus meningkat. Salah satu manfaat utama pemanfaatan energi surya adalah potensi penghematan biaya listrik, terutama dengan prediksi yang akurat terhadap produksi energi dari sistem fotovoltaik. Untuk mengestimasi potensi penghematan biaya listrik, diperlukan pemodelan yang tepat berdasarkan perhitungan Global Horizontal Irradiance (GHI), yaitu parameter yang merepresentasikan jumlah radiasi matahari yang diterima pada permukaan horizontal bumi.. Namun, prediksi GHI menghadapi tantangan akibat faktor atmosferik yang dinamis, seperti suhu, kelembapan, dan kecepatan angin. Untuk mengatasi tantangan ini, penelitian ini mengembangkan model prediksi GHI menggunakan algoritma Long Short-Term Memory (LSTM), sebuah jenis jaringan saraf tiruan yang efektif dalam mengolah data sequensial dengan ketergantungan jangka panjang. Selain itu, hasil prediksi GHI (Wh/m²) dikonversi menjadi energi listrik (kWh) untuk mengestimasi potensi penghematan biaya listrik. Penelitian ini juga merancang aplikasi berbasis web yang memungkinkan visualisasi interaktif hasil prediksi, sehingga dapat membantu pengambilan keputusan dalam perencanaan energi surya. Model yang dikembangkan menunjukkan performa yang tinggi dengan nilai R² sebesar 0.96, MAE sebesar 0.021, dan RMSE sebesar 0.03. Dengan pendekatan ini, penelitian diharapkan dapat memberikan kontribusi dalam optimalisasi energi surya dan mendukung transisi menuju sistem energi yang lebih berkelanjutan.




DOI: http://dx.doi.org/10.30659/ei.7.2.%25p

Refbacks

  • There are currently no refbacks.


Jurnal Transistor EI diterbitkan oleh Fakultas Teknologi Industri, Universitas Islam Sultan Agung, Semarang, Indonesia