The Administration of Topical Aloe vera Extract Reduce the Number of Sunburn Cells and Expression of Caspase-3 on Post UVB-light-exposure Epidermis

Kusumawati Soetrisno¹, Prasetyowati Subchan², Atina Hussana³
¹Biomedical Science Study Program, Medical Faculty, Universitas Islam Sultan Agung, Semarang
²Dermatology and Venereology Study Program, Medical Faculty, Universitas Diponegoro, Semarang
³Pharmacology Department, Medical Faculty, Universitas Islam Sultan Agung, Semarang

The Administration of Topical Aloe vera Extract Reduce the Number of Sunburn Cells and Expression of Caspase-3...
Aloe vera is a plant known to have an antioxidant effect, such as superoxide, hydroxyl radicals, and hydrogen peroxide (D’Orazio et al., 2013). These free radicals can bind to DNA so that it has the potential to change cell structure and function. Furthermore, UVB exposure to the epidermis can also cause permanent DNA damage to keratinocyte cells which is mediated by ROS thereby triggering apoptosis (Nys et al., 2012; Craig et al., 2018). The apoptosis process is mediated by the protein cytosolic aspartate-specific cysteine protease (Caspase). Caspase can be divided into initiators (caspase-2, caspase-8, caspase-9, and caspase-10), executors (caspase-3, caspase-6, and caspase-7) and inflammatory (caspase-1, caspase-4, caspase-5) (Julien and Wells, 2017). Caspase-3 is one of the central executor caspases that has been studied in detail. Caspase-3 is often used in monitoring the apoptosis process in cells due to its role in DNA fragmentation (McIlwain et al., 2013; Song et al., 2015).

This study aimed to evaluate the effect of topical Aloe Vera extract on caspase-3 expression and the number of SBC exposed to UV light.

METHODS

This study was classified into a laboratory experimental research with a post-test only control group design. Thirty-two hairless female Balb/c rats aged 6 weeks weighing 20-30 grams were divided randomly into 2 groups. The first group was the control group (Group A) and the second group was the treatment group (Group B). Both groups were irradiated with a single dose of UVB 3 DEM for 30 minutes. The control group was not given any treatment, while in the treatment group 0.1 mL of Aloe vera gel extract with a concentration of 75% was applied to the back area. The control and treatment groups were divided into 4 subgroups based on different observation times, namely 6 hours post-radiation (sub-group A1 and B1), 12 hours post-radiation (sub-group A2 and B2), 24 hours post-radiation. (sub-group A3 and B3), and 48 hours post-radiation (sub-group A4 and B4). The Aloe Vera extract and UVB exposure were given for 7 days. The expression of caspase-3 was assessed by the immunohistochemical staining method and then viewed under a light microscope with a magnification of 100 times. The number of SBC was calculated through a microscope with Hematoxylin-Eosin (HE) staining at 400 times magnification. The researcher calculated the number of SBC with 2 repetitions. This research has been approved by the Bioethics Committee of Medical/Health Research, Faculty of Medicine, Universitas Islam Sultan Agung Semarang No. 110/III/2016/Bioethical Commission.
Preparation of Aloe vera Gel Extract

Aloe vera was washed under tap water then dried in a microwave oven at 45°C for 3-5 days. Dried Aloe vera with a length of 50 cm, 2.5 cm thick was then cleaned, removed, and finely ground. The Aloe vera powder was then added with 70% ethanol and stirred for 30 minutes using a magnetic stirrer then left for 48 hours. The maceration result was filtered 3 times through a Büchner funnel coated with filter paper and collected with an Erlenmeyer flask. The filtrate was evaporated through a vacuum rotary evaporator. Furthermore, the Aloe vera extract was diluted with distilled water to reach a concentration of 75%. Aloe vera extract was then applied to the skin of the back of the rats measuring 1x1 cm thinly in group B before irradiation.

UVB irradiation

Rats were placed on a container that was 40 cm from the UVB light source. UVB light was emitted from a 125-watt lamp in a single dose of 3 DEM for 30 minutes.

Preparing Skin Sample Preparations

Rats that had been exposed to UVB light were narcotized with ether and their dorsal skin tissue was taken with a size of 1x1 cm. Furthermore, the network was fixed with a 10% Neutral Formalin Buffer (BFN) solution with a ratio of 1:10 for 2 days. The fixation results were cut to a thickness of 3-5 µm and arranged in a tissue cassette which was then put in a special basket. The baskets were dehydrated gradually, namely with absolute alcohol twice for 5 minutes, 96% alcohol for 5 minutes, and 80% alcohol for 5 minutes. The sample was then washed under running water for 5 minutes. The retrieval antigen in the form of citrate buffer with pH 6 was placed on a staining dish and heated to a high temperature to boiling (90-95oC) in a de-cloaking chamber. The slides were put in and incubated for 20-40 minutes. Next, the staining dish was removed and left to room temperature. The slides were then washed with PBS 2 times for 5 minutes each. Next, the slide preparations were blocked with endogenous peroxidase and sniper background (blue color).

The caspase-3 antibody (primary antibody) that has been mixed with PBS (0.02 Molar with a ratio of 1:100) was dripped into the sample. Then the samples were incubated at 4oC and left for 1 night. After incubation, the samples were washed 2 times with PBS for 5 minutes each. Yellow universal link (secondary antibody) was dripped onto the sample and incubated for 15 minutes. Furthermore, the samples were washed 2 times with PBS for 5 minutes each. Samples were dripped with streptavidin (orange color) and incubated for 10 minutes. Furthermore, the samples were washed 2 times with PBS for 5 minutes each. Samples were dripped with DAB and incubated for 3-5 minutes. After incubation, the samples were washed under running water for 5 minutes. The sample then received hematoxylin counterstaining and was washed under running water. Dehydration and clearing were performed using 96% alcohol for 1 minute, absolute alcohol for 1 minute, and immersed in xylol for 1 minute. Observations were made using a light microscope and positive cells were counted per 100 cells in 100 times magnification. Keratinocytes expressing caspase-3 have a brownish nucleus whereas keratinocytes without caspase-3 nucleus/cytoplasm are bluish or brownish.

Statistical analysis

The data on caspase-3 expression in this study were not normally distributed and not homogeneous, so the Kruskal-Wallis and Mann-Whitney statistical tests were performed. Data on the number of SBC were normally distributed and homogeneous so that the one-way ANOVA test and the LSD posthoc test were performed. The analysis result was considered significant if p <0.05.
Table 1. Mean Caspase-3 Expression and Number of SBC in Balb/c Female Rats

<table>
<thead>
<tr>
<th>Variables</th>
<th>Groups</th>
<th>(\bar{x} \pm SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A_1) (n=4)</td>
<td>(A_2) (n=4)</td>
</tr>
<tr>
<td>Caspase 3 (%)</td>
<td>(2.25 \pm 0.10)</td>
<td>(4.65 \pm 0.30)</td>
</tr>
<tr>
<td>SBC (%)</td>
<td>(4.03 \pm 0.19)</td>
<td>(10.00 \pm 0.82)</td>
</tr>
</tbody>
</table>

Figure 1. A. Histopathological picture of sunburn cell was stained by Hematoxylin Eosin in each subgroup; B. Histopathological picture of sunburn cell was stained by Immunohistochemistry in each subgroup following UVB irradiation

Figure 2. A. Number of sunburn cells in each groups; B. Number of caspase-3 expression in each group. Post Hoc LSD and Mann Withney analysis: * p<0.05; ns: not significant
The Administration of Topical Aloe vera Extract Reduce the Number of Sunburn Cells and Expression of Caspase-3 ...

RESULTS

After exposure and application of topical aloe vera extract for 7 days, the results were presented in Table 1.

The results of this study indicated that the mean caspase-3 expression and the number of SBC in all group B (B1-B4) were generally lower than group-A (A1-A4) (Figure 1A, B). Likewise, the mean in each sub-group was also different. To find out whether the difference in caspase-3 expression and SBC count was significant, a statistical test was performed. The Kruskal Wallis test results showed that the expression of caspase-3 between groups was significantly different, p <0.05. ANOVA test results also showed that the number of SBC between groups was significantly different, p <0.05. Furthermore, to find out which groups were different, it was necessary to perform the Mann Whitney test for caspase-3 expression and Post Hoc for the number of SBC described below.

The Number of Sunburn Cells

The results of the Post Hoc analysis showed that the number of SBC in subgroup A1 was significantly lower than A2, A3, and significantly higher than A4, each with p <0.05. On the other hand, the SBC count in subgroup A1-A4 was significantly higher than subgroup B1-B4, respectively, p <0.05. The number of SBC in subgroup B1 was significantly lower than B2, B3, and significantly higher than B4, each with p <0.05. Furthermore, the SBC count in subgroup B1 was significantly lower than A1-A4, respectively p <0.05. The number of SBC in subgroup B4 was significantly lower than that in groups B1-B3, p <0.05. Meanwhile, the number of SBC in B3 was not significantly different from B1, p> 0.05 (Figure 2A). The results of this study illustrate that the administration of topical aloe Vera can reduce the number of SBC due to exposure to UV light.

Caspase-3 Expression

The results of the Mann-Whitney analysis showed that the caspase-3 expression in the A1 subgroup was significantly lower than A2, A3, and significantly higher than A4, p <0.05. On the other hand, the expression of caspase-3 subgroup A1-A4 was significantly higher than subgroup B1-B4, respectively, p <0.05. The expression of caspase-3 in subgroup B1 was significantly lower than B2, B3, p <0.05 and was not significantly different from B4, p> 0.05. Furthermore, caspase-3 expression in subgroup B1 was significantly lower than A1-A3, p <0.05, and not significantly different than A4, p> 0.05. The expression of caspase-3 in subgroup B4 was significantly lower than both groups B2 and B3, p <0.05, and was not significantly different from B1, p> 0.05 (Figure 2B). The results of this study illustrate that the administration of topical aloe Vera can reduce caspase-3 expression due to exposure to UV light.

DISCUSSION

The results of this study indicated that administration of topical Aloe vera extract could reduce caspase-3 activity in rats exposed to UVB light for 7 days. The results of this study are in line with previous studies which stated that topical application of Aloe vera has the potential to protect skin damage from UV light (Kumar et al., 2009). Referring to these results and previous studies, it can be implied that skin damage due to UV exposure is related to sunburn cells and apoptosis which is mediated by DNA damage (Nys et al., 2012; Craig et al., 2018). There were several potential
mechanisms to explain this phenomenon. First, Aloe vera can reduce the dose of UVB light received by keratinocytes so that the threshold to initiate apoptosis is not reached. Based on preliminary research on the formation of SBC, there was a threshold for a minimum UVB dose so that the apoptosis process in keratinocytes can be started (Bayerl et al., 1995; D’Orazio et al., 2013). This fact has been applied to sunscreens where several organic and non-organic compounds act as UV absorbers so that the apoptosis threshold is not reached (Gabros dan Zito, 2020). The polyphenol compounds and methanolic extracts in Aloe vera have good UV absorption properties and have been incorporated into several sunscreens (Kumar et al., 2009; Goswami et al., 2013; Ray et al., 2013). Second, Aloe vera can inhibit caspase-3 activation through its anti-inflammatory and antioxidant properties. Many inflammatory mediators can activate apoptotic pathways such as Fas ligand and MMP-9 (Asuthkar et al., 2012; Lee et al., 2013; Yang et al., 2015). The polysaccharide and anthraquinone compounds in Aloe vera are known to inhibit the inflammatory process by inhibiting the COX pathway and reducing the MMP-9 concentration (Vijayalakshmi et al., 2012; Paul et al., 2014). Apart from inflammatory mediators, exposure to UVB light also increases oxidative compounds such as hydroxyl and superoxide groups which also activate the apoptotic pathway (Salucci et al., 2012; Lee et al., 2013). The activity of polysaccharides such as glucomannan in Amorphophallus konjac is known to have antioxidant effects (Liu et al., 2015). Therefore, Aloe vera which has the same polysaccharides is thought to reduce the production of oxidative compounds from UVB light. Third, Aloe Vera inhibits caspase-3 by activating an apoptosis inhibitor. In the human body, the apoptosis process can be inhibited by several molecules such as Bcl-2, Bcl-x, and antioxidant compounds (superoxide dismutase, catalase, glutathione peroxidase). However, current research on the relationship between Aloe vera and Bcl-2 is still inconclusive (Shalabi et al., 2015; Yonehara et al., 2015).

The results of this study also indicated that the mean sub-group 48 hours post-radiation (sub-group A4 and B4) was not significant. These findings suggest that Aloe vera may have a time-dependent effect (Figure 3A, B). This is following previous studies stated that Aloe vera protection against UV was optimal in the first 24 hours post-exposure (Kumar et al., 2009). However, the time-dependent effect of Aloe vera still needs further investigation using a longer post-exposure observation time or studies studying factors that play a role in caspase-3 expression after 48 hours post-UVB irradiation. Besides, further studies are needed to see the effectiveness of Aloe vera on repeated UVB exposure.

This study showed there was a significant decrease in SBC counts between almost all control and treatment groups. This is consistent with other studies which state that SBC is formed in the first 10-24 hours and disappears in 36-48 hours post-radiation (Matsumura and Ananthaswamy, 2002; Ibuki et al., 2007). The reduced SBC number in the treatment group was probably due to the antioxidant and anti-inflammatory effects of Aloe vera’s glucomannan and acemannan. These two polysaccharides are hydroxyl free radical scavenger compounds and can increase the expression of superoxide dismutase (SOD) and glutathione peroxidase (Vázquez-Velasco et al., 2014; Wu et al., 2014).

CONCLUSION

Application of Aloe Vera gel extract 75% can reduce the expression of caspase-3 and the number of SBC in female Balb/c rats exposed to UVB radiation. Aloe Vera application has a time-dependent effect and shows the highest efficacy at 24 hours post-exposure.

CONFLICT OF INTEREST

There is no conflict of interest in this publication

ACKNOWLEDGMENT

We thank the laboratory staffs of the Center for Food and Nutrition Studies, Gadjah Mada University for their guidance in maintaining and collecting samples for this research.

REFERENCES

The Administration of Topical Aloe vera Extract Reduce the Number of Sunburn Cells and Expression of Caspase-3 ...

255–266.

