Exploration of Xanthone Derivatives as Anti-Cancer Agents against Colorectal Cancer

Isnatin Miladiyah


Colorectal cancer currently occupies the third position of globally cancer morbidity and is the second leading cause of cancer death after lung cancer. Chemotherapy administration is still the main modality for the colorectal cancer stage I to III. Its usage is limited, since its high resistance and risk of side effects. Thus, exploration and development of novel colorectal anti-cancer drugs, including compounds derived from nature origin is needed. Xanthone becomes one natural compound which may be potentially developed as an anti-colorectal cancer due to its cytotoxic and anti-proliferative activities. The in vitro cytotoxic and anti-proliferative actions of xanthone compounds occur through a variety of mechanisms involving both apoptotic induction and inhibition of cell cycle, while in vivo may reduce the tumor size. Since colorectal cancer is frequently treated in a combination therapy, xanthone compounds have also been studied in a combination use and proven effective as co-chemotherapy with the standard chemotherapy drugs. This paper aims at providing an overview of colorectal cancer, pathology, risk factors and protective factors, as well as discussing the current therapies and potential xanthone compounds as an alternative therapy which may be developed later for the colorectal cancer


colorectal cancer; xanthone derivatives; apoptosis; cell cycle; synergistic effect

Full Text:



Abdelbary, G., Amin, M., & Salah, S. (2013). Self nano-emulsifying simvastatin based tablets: Design and in vitro/in vivo evaluation. Pharmaceutic Devel Technol, 18(6), 1294–1304. https://doi.org/10.3109/10837450.2012.672989

Aisha, A. F. A., Abdulmajid, A. M. S., Ismail, Z., Alrokayan, S. A., & Abu-Salah, K. M. (2015). Development of Polymeric Nanoparticles of Garcinia mangostana Xanthones in Eudragit RL100/RS100 for Anti-Colon Cancer Drug Delivery. J Nanomaterials, 2015(Figure 1), 4–7. https://doi.org/10.1155/2015/701979

Aisha, A. F. A., Abu-Salah, K. M., Ismail, Z., & Majid, A. M. S. A. (2012). In vitro and in vivo anti-colon cancer effects of Garcinia mangostana xanthones extract. BMC Complement Alt Med, 12, 4–13. https://doi.org/10.1186/1472-6882-12-104

Aisha, A. F. A., Abu-Salah, K. M., Nassar, Z. D., Siddiqui, M. J., Ismail, Z., & Majid, A. M. S. A. (2011). Antitumorigenicity of xanthones-rich extract from garcinia mangostana fruit rinds on HCT 116 human colorectal carcinoma cells. Brazilian J Pharmacognosy, 21(6), 1025–1034. https://doi.org/10.1590/S0102-695X2011005000164

American Cancer Society. (2008). …About colorectal cancer. In Nursing (Vol. 38). https://doi.org/10.1097/01.nurse.0000327480.09581.b0

American Cancer Society. (2017). Colorectal Cancer Facts & Figures 2017-2019. Retrieved from https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/colorectal-cancer-facts-and-figures/colorectal-cancer-facts-and-figures-2017-2019.pdf.

Bradley, C. J., Yabroff, K. R., Dahman, B., Feuer, E. J., Mariotto, A., & Brown, M. L. (2008). Productivity costs of cancer mortality in the United States: 2000-2020. J Nat Cancer Inst, 100, 1763–1770. https://doi.org/10.1093/jnci/djn384

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin, 68(6), 394–424. https://doi.org/10.3322/caac.21492

Cherniakov, I., Domb, A. J., & Hoffman, A. (2015). Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opinion on Drug Delivery, 12(7), 1121–1133. https://doi.org/10.1517/17425247.2015.999038

Floor, L., Dumont, J. E., Maenhaut, C., & Raspe, E. (2012). Hallmarks of cancer : of all cancer cells , all the time ? Trends in Mol Med, 18(9), 509–515.

Gobbi, S., Zimmer, C., Belluti, F., Rampa, A., Hartmann, R. W., Recanatini, M., & Bisi, A. (2010). Novel highly potent and selective nonsteroidal aromatase inhibitors: Synthesis, biological evaluation and structure-activity relationships investigation. J Med Chem, 53(14), 5347–5351. https://doi.org/10.1021/jm100319h

Granados-Romero, J. J., Valderrama-Treviño, A. I., Contreras-Flores, E. H., Barrera-Mera, B., Herrera Enríquez, M., Uriarte-Ruíz, K., … Arauz-Peña, G. (2017). Colorectal cancer: a review. Int J Res Med Sci, 5(11), 4667. https://doi.org/10.18203/2320-6012.ijrms20174914

Han, A. R., Kim, J. A., Lantvit, D. D., Kardono, L. B. S., Riswan, S., Chai, H., … Kinghorn, a. D. (2009). Cytotoxic xanthone constituents of the stem bark of Garcinia mangostana (mangosteen). J Nat Prod, 72, 2028–2031. https://doi.org/10.1021/np900517h

Hanahan, D., & Weinberg, R. A. (2011). Review Hallmarks of Cancer : The Next Generation. Cell, 144, 646–674. https://doi.org/10.1016/j.cell.2011.02.013

Hanly, P., Soerjomataram, I., & Sharp, L. (2015). Measuring the societal burden of cancer: The cost of lost productivity due to premature cancer-related mortality in Europe. Intern J Cancer, 136(4), E136–E145. https://doi.org/10.1002/ijc.29105

Harrington, K. J. (2011). Biology of cancer. Medicine, 39, 689–692.

Ibrahim, M. Y., Hashim, N. M., Mariod, A. A., Mohan, S., Abdulla, M. A., Abdelwahab, S. I., & Arbab, I. A. (2016). α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties. Arabian J Chem, Vol. 9, pp. 317–329. https://doi.org/10.1016/j.arabjc.2014.02.011

Jemal, A., Center, M. M., DeSantis, C., & Ward, E. M. (2010). Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol, Biomarkers & Prev, 19(8), 1893–1907. https://doi.org/10.1158/1055-9965.EPI-10-0437

Kuete, V., Sandjo, L. P., Nantchouang, J. L., Fouotsa, H., Wiench, B., & Efferth, T. (2014). Cytotoxicity and modes of action of three naturally occurring xanthones ( 8-hydroxycudraxanthone G , morusignin I and cudraxanthone I ) against sensitive and multidrug-resistant cancer cell lines. Phytomed, 21, 315–322.

Larson, S. M., Mariani, G., & Strauss, H. W. (2013). Tumor biology as a basis for molecular targeting in cancer. Clin Trans Imaging, 1, 397–406. https://doi.org/10.1007/s40336-013-0044-9

Low, K. C., & Tergaonkar, V. (2013). Telomerase: Central regulator of all of the hallmarks of cancer. Trends in Biochem Sci, Vol. 38, pp. 426–434. https://doi.org/10.1016/j.tibs.2013.07.001

Luengo-Fernandez, R., Leal, J., Gray, A., & Sullivan, R. (2013). Economic burden of cancer across the European Union: A population-based cost analysis. The Lancet Oncology, 14(12), 1165–1174. https://doi.org/10.1016/S1470-2045(13)70442-X

MacConaill, L. E., & Garraway, L. a. (2010). Clinical implications of the cancer genome. J Clin Oncol, 28(35), 5219–5228. https://doi.org/10.1200/JCO.2009.27.4944

Mármol, I., Sánchez-de-Diego, C., Dieste, A. P., Cerrada, E., & Yoldi, M. J. R. (2017). Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci, 18(1). https://doi.org/10.3390/ijms18010197

Matsumoto, K., Akao, Y., Ohguchi, K., Ito, T., Tanaka, T., Iinuma, M., & Nozawa, Y. (2005). Xanthones induce cell-cycle arrest and apoptosis in human colon cancer DLD-1 cells. Bioorg Med Chem, 13(21), 6064–6069. https://doi.org/10.1016/j.bmc.2005.06.065

Mohan, S., Ibrahim, S., Kamalidehghan, B., Syam, S., Sue, K., Saad, N., … Zajmi, A. (2012). Involvement of NF- ␬ B and Bcl2 / Bax signaling pathways in the apoptosis of MCF7 cells induced by a xanthone compound Pyranocycloartobiloxanthone A. Phytomed, 19, 1007–1015.

Mojarad, E. N., Kuppen, P. J. K., Aghdaei, H. A., & Zali, M. R. (2013). The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol from Bed to Bench, 6(3), 120–128. https://doi.org/10.22037/ghfbb.v6i3.383

Nabandith, V., Suzui, M., Morioka, T., Kaneshiro, T., Kinjo, T., Matsumoto, K., … Yoshimi, N. (2004). Inhibitory effects of crude α-mangostin, a xanthone derivative, on two different categories of colon preneoplastic lesions induced by 1, 2-dimethylhydrazine in the rat. Asian Pacific J Cancer Prev, 5(4), 433–438.

Nakagawa, Y., Iinuma, M., Naoe, T., Nozawa, Y., & Akao, Y. (2007). Characterized mechanism of α-mangostin-induced cell death: Caspase-independent apoptosis with release of endonuclease-G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorg Med Chem, 15, 5620–5628. https://doi.org/10.1016/j.bmc.2007.04.071

Novellasdemunt, L., Antas, P., & Li, V. S. W. (2015). Targeting Wnt signaling in colorectal cancer. A review in the theme: Cell signaling: Proteins, pathways and mechanisms. American J Physiol - Cell Physiol, 309(8), C511–C521. https://doi.org/10.1152/ajpcell.00117.2015

Pino, M. S., & Chung, D. C. (2010). The chromosomal instability pathway in colorectal cancer. Gastroenterol, 138(6), 2059–2072. https://doi.org/10.1053/j.gastro.2009.12.065.THE

Pinto, M. M. M., Sousa, M. E., & Nascimento, M. S. J. (2005). Xanthone derivatives: new insights in biological activities. Curr Med Chem, 12, 2517–2538.

Rajasekaran, D., Manoharan, S., Silvan, S., Vasudevan, K., Baskaran, N., & Palanimuthu, D. (2013). Propapoptotic, Anti-Cell Proliferative,Anti-Inflammatory and Anti-Angiogenic Potential of Carnosic Acid during 7, 12-Dimethylbenz[a]anthracene-induced Hamster Buccal Pouch Carcinogenesis. Afr J Tradit Complement Altern Med, 10, 102–111. https://doi.org/10.1073/pnas.0703993104

Tsakalozou, E., Eckman, A. M., & Bae, Y. (2012). Combination effects of docetaxel and doxorubicin in hormone-refractory prostate cancer cells. Biochem Res Intern, 2012. https://doi.org/10.1155/2012/832059

Vemu, B., Nauman, M. C., Veenstra, J. P., & Johnson, J. J. (2019). Structure activity relationship of xanthones for inhibition of Cyclin Dependent Kinase 4 from mangosteen (Garcinia mangostana L.). Int J Nutr, 4(2), 38–45.

Watanapokasin, R., Jarinthanan, F., Jerusalmi, A., Suksamrarn, S., Nakamura, Y., Sukseree, S., … Sano, T. (2010). Potential of xanthones from tropical fruit mangosteen as anti-cancer agents: Caspase-dependent apoptosis induction in vitro and in mice. Applied Biochem Biotechnol, 162(4), 1080–1094. https://doi.org/10.1007/s12010-009-8903-6

Watanapokasin, R., Jarinthanan, F., Nakamura, Y., Sawasjirakij, N., Jaratrungtawee, A., & Suksamrarn, S. (2011). Effects of α-mangostin on apoptosis induction of human colon cancer. World J Gastroenterol, 17(16), 2086–2095. https://doi.org/10.3748/wjg.v17.i16.2086

Workman, P., Al-lazikani, B., & Clarke, P. A. (2013). Genome-based cancer therapeutics : targets , kinase drug resistance and future strategies for precision oncology. Curr Opinion in Pharmacol, 13, 486–496.

World Health Organization. (2019). Indonesia Source GLOBOCAN 2018. In International Agency for Research on Cancer (Vol. 256). Retrieved from http://gco.iarc.fr/

Yang, Z.-M., Huang, J., Qin, J.-K., Dai, Z.-K., Lan, W.-L., Su, G.-F., … Yang, F. (2014). Design, synthesis and biological evaluation of novel 1-hydroxyl-3- aminoalkoxy xanthone derivatives as potent anticancer agents. Eur J Med Chem, 85, 487–497. https://doi.org/10.1016/j.ejmech.2014.07.076

Yoo, J., Kang, K., Hye, E., Chin, Y., Kim, J., & Won, C. (2011). - and -mangostin inhibit the proliferation of colon cancer cells via -catenin gene regulation in Wnt/cGMP signalling. Food Chem, 129(4), 1559–1566. https://doi.org/10.1016/j.foodchem.2011.06.007

DOI: http://dx.doi.org/10.30659/sainsmed.v11i1.7681

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Indexed by:


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://jurnal.unissula.ac.id/index.php/sainsmedika.

stats View My Stats.