Prognostic significance of tumor angiogenesis markers in advanced cervical cancer undergoing chemotherapy

I Nyoman Bayu Mahendra*  -  Department of Obstetrics and Gynecology Prof. Dr. I.G.N.G. Ngoerah Central General Hospital, Denpasar, Bali, Indonesia
I Gde Sastra Winata  -  Department of Obstetrics and Gynecology Prof. Dr. I.G.N.G. Ngoerah Central General Hospital, Denpasar, Bali, Indonesia
William Alexander Setiawan  -  Department of Obstetrics and Gynecology Prof. Dr. I.G.N.G. Ngoerah Central General Hospital, Denpasar, Bali, Indonesia
Ida Bagus Agung Widnyana Putra  -  Department of Obstetrics and Gynecology Prof. Dr. I.G.N.G. Ngoerah Central General Hospital, Denpasar, Bali, Indonesia
Putu Bagus Darmayasa  -  Department of Obstetrics and Gynecology Prof. Dr. I.G.N.G. Ngoerah Central General Hospital, Denpasar, Bali, Indonesia

(*) Corresponding Author

Cervical cancer is the second leading cause of cancer-related deaths among women worldwide. Despite advancements in screening programs and vaccination efforts, a significant proportion of patients present with advanced-stage disease, characterized by severe manifestations and a poor prognosis. Clinical evidence highlights substantial variability in the sensitivity of chemotherapy regimens among cervical cancer patients, often resulting in suboptimal therapeutic outcomes and increased risk of complications. This underscores the need for reliable molecular markers to predict prognosis and optimize therapy. Angiogenesis plays a pivotal role in the development and progression of solid tumors, including cervical cancer. Key tumor angiogenesis markers, such as vascular endothelial growth factor (VEGF) and its receptor (VEGFR), are critical in driving tumor progression in advanced cervical cancer. Studies have demonstrated significant correlations between VEGF levels and important prognostic parameters, including tumor size, metastasis, and chemotherapy response. Consequently, tumor angiogenesis markers like VEGF and VEGFR hold potential as valuable predictive tools to guide the management of advanced cervical cancer, particularly in patients undergoing chemotherapy.

Keywords: advanced cervical cancer, chemotherapy, prognosis, VEGF, VEGFR

  1. Abdalla, D. R., Simoens, C., Bogers, J.-P., Murta, E. F. C., & Michelin, M. A. (2015). Angiogenesis markers in gynecological tumors and patents for anti-angiogenic approach: Review. Recent Patents on Anti-Cancer Drug Discovery, 10(3): 298–307. https://doi.org/10.2174/1574892810999150827153642
  2. Apte, R. S., Chen, D. S., & Ferrara, N. (2019). Review VEGF in signaling and disease : Beyond discovery and development. Cell, 176(6): 1248–1264. https://doi.org/10.1016/j.cell.2019.01.021
  3. Baharara, J., Ramezani, T., Divsalar, A., Mousavi, M., & Seyedarabi, A. (2016). Induction of Apoptosis by green synthesized gold nanoparticles through activation of caspase-3 and 9 in human cervical cancer cells. Avicenna Journal of Medical Biotechnology, 8(2): 75–83. https://pmc.ncbi.nlm.nih.gov/articles/PMC4842245/
  4. Barut, M. U., Kale, A., Kuyumcuoglu, U., Bozkurt, M., Agaçayak, E., Özekinci, S., & Gül, T. (2015). Analysis of sensitivity, specificity, and positive and negative predictive values of smear and colposcopy in diagnosis of premalignant and malignant cervical lesions. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 21: 3860–3867. https://doi.org/10.12659/msm.895227
  5. Brisson, M., & Drolet, M. (2019). Global elimination of cervical cancer as a public health problem. The Lancet. Oncology, 20(3): 319–321. https://doi.org/10.1016/S1470-2045(19)30072-5
  6. Çakir, C., Kiliç, F., Dur, R., Yüksel, D., Ünsal, M., Korkmaz, V., Kiliç, Ç., Kimyon Cömert, G., Boran, N., Türkmen, O., Koç, S., & Turan, T. (2021). Neoadjuvant chemotherapy for locally advanced stage (IB2-IIA2-IIB) cervical carcinoma: Experience of a tertiary center and comprehensive review of the literature. Turkish Journal of Obstetrics and Gynecology, 18(3): 190–202. https://doi.org/10.4274/tjod.galenos.2021.70493
  7. Choi, C. H., Song, S. Y., Choi, J. J., Park, Y. A., Kang, H., Kim, T. J., Lee, J. W., Kim, B. G., Lee, J. H., & Bae, D. S. (2008). Prognostic significance of VEGF expression in patients with bulky cervical carcinoma undergoing neoadjuvant chemotherapy. BMC Cancer, 8: 1–7. https://doi.org/10.1186/1471-2407-8-295
  8. Dang, Y. Z., Zhang, Y., Li, J. P., Hu, J., Li, W. W., Li, P., Wei, L. C., & Shi, M. (2017). High VEGFR1/2 expression levels are predictors of poor survival in patients with cervical cancer. Medicine (United States), 96(1): 1–6. https://doi.org/10.1097/MD.0000000000005772
  9. Du, K., Gong, H. Y., & Gong, Z. M. (2014). Influence of serum vegf levels on therapeutic outcome and diagnosis/prognostic value in patients with cervical cancer. Asian Pacific Journal of Cancer Prevention, 15(20): 8793–8796. https://doi.org/10.7314/APJCP.2014.15.20.8793
  10. Eskander, R. N., & Tewari, K. S. (2014). Targeting angiogenesis in advanced cervical cancer. Therapeutic Advances in Medical Oncology, 6(6): 280–292. https://doi.org/10.1177/1758834014543794
  11. Foran, C., & Brennan, A. (2015). Prevention and early detection of cervical cancer in the UK. British Journal of Nursing (Mark Allen Publishing), 24(10): S22-4, S26, S28-9. https://doi.org/10.12968/bjon.2015.24.Sup10.S22
  12. Gao, Y., Wang, H., Zhong, A., & Yu, T. (2020). Expression and prognosis of CyclinA and CDK2 in patients with advanced cervical cancer after chemotherapy. Cellular and Molecular Biology, 66(3 SE-Original Research Articles): 85–91. https://doi.org/10.14715/cmb/2020.66.3.13
  13. Kfouri, C. F. D. A., Lombardi, W., Romania, M. C. F. N., Puls, M. L., Martins-Ferreira, R. A., Lombardi, L. B., & Andrade, J. M. De. (2019). Prognostic factors for response to chemotherapy in advanced tumors of the uterine cervix: The role of neoangiogenesis. Revista Do Colegio Brasileiro de Cirurgioes, 46(1): 1–10. https://doi.org/10.1590/0100-6991e-20192077
  14. Kurmyshkina, O. V, Belova, L. L., Kovchur, P. I., & Volkova, T. O. (2015). Remodeling of angiogenesis and lymphangiogenesis in cervical cancer development. Biomeditsinskaia khimiia, 61(5): 579–597. https://doi.org/10.18097/PBMC20156105579
  15. Li, W., Zhang, W., Sun, L., Wang, L., Cui, Z., Zhao, H., Wang, D., Zhang, Y., Guo, J., Yang, Y., Wang, W., Bin, X., Lang, J., Liu, P., & Chen, C. (2021). Neoadjuvant Chemotherapy followed by surgery versus abdominal radical hysterectomy alone for oncological outcomes of stage IB3 cervical cancer—A Propensity score matching analysis. Frontiers in Oncology, 11(September): 1–11. https://doi.org/10.3389/fonc.2021.730753
  16. Li, X., An, C., Feng, C., Sun, J., Lu, H., Yang, X., Wang, K., & Wang, R. (2022). A retrospective study of chemotherapy and 3D-Image-guided afterloading intracavitary radiotherapy in locally advanced cervical cancer. Journal of Oncology, 9578436(1): 1-8. https://doi.org/10.1155/2022/9578436
  17. Liu, Y., Ye, Z., Sun, H., & Bai, R. (2013). Grading of uterine cervical cancer by using the ADC difference value and its correlation with microvascular density and vascular endothelial growth factor. European Radiology, 23(3): 757–765. https://doi.org/10.1007/s00330-012-2657-1
  18. Lv, Q., Zhong, W., Ye, X., Lv, Y., Liu, H., Yan, G., & Chen, D. (2018). Expression of angiopoietin and vegf in cervical cancer and its clinical significance. Open Life Sciences, 13: 527–532. https://doi.org/10.1515/biol-2018-0063
  19. Nwankwo, T. O., Umeh, U. A., Aniebue, U. U., Onu, J. U., & Umeh, C. R. (2020). Impact of neoadjuvant chemotherapy in improving operative intervention in the management of cervical cancer in low resource setting: a preliminary report. The Pan African Medical Journal, 36(210): 1-6. https://doi.org/10.11604/pamj.2020.36.210.24141
  20. Parida, S., Pal, I., Parekh, A., Thakur, B., Bharti, R., Das, S., & Mandal, M. (2016). GW627368X inhibits proliferation and induces apoptosis in cervical cancer by interfering with EP4/EGFR interactive signaling. Cell Death & Disease, 7(e2154): 1-13. https://doi.org/10.1038/cddis.2016.61
  21. Patel, N. H., Sohal, S. S., Manjili, M. H., Harrell, J. C., & Gewirtz, D. A. (2020). The roles of autophagy and senescence in the tumor cell response to radiation. Radiation Research, 194(2): 103–115. https://doi.org/10.1667/RADE-20-00009
  22. Pierre-Victor, D., Stephens, D. P., Omondi, A., Clarke, R., Jean-Baptiste, N., & Madhivanan, P. (2018). Barriers to HPV vaccination among unvaccinated, Haitian American College Women. Health Equity, 2(1): 90–97. https://doi.org/10.1089/heq.2017.0028
  23. Pimple, S. A., & Mishra, G. A. (2019). Global strategies for cervical cancer prevention and screening. Minerva Ginecologica, 71(4): 313–320. https://doi.org/10.23736/S0026-4784.19.04397-1
  24. Pinheiro, C., Garcia, E. A., Morais-Santos, F., Moreira, M. A. R., Almeida, F. M., Jubé, L. F., Queiroz, G. S., Paula, É. C., Andreoli, M. A., Villa, L. L., Longatto-Filho, A., & Baltazar, F. (2015). Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas. BMC Cancer, 15(1): 835. https://doi.org/10.1186/s12885-015-1842-4
  25. Rahmani, A. H., Babiker, A. Y., Alsahli, M. A., Almatroodi, S. A., & Husain, N. E. O. S. (2018). Prognostic significance of vascular endothelial growth factor (VEGF) and Her-2 protein in the genesis of cervical carcinoma. Open Access Macedonian Journal of Medical Sciences, 6(2): 263–268. https://doi.org/10.3889/OAMJMS.2018.089
  26. Ramesh, A., Chander, R. V., Srinivasan, C., & Vengadassalapathy, S. (2020). Prevalence of angiogenesis, proliferation, and apoptosis markers of cervical cancer and their correlation with clinicopathological parameters. Journal of Oncology, 2020(8541415): 1-6. https://doi.org/10.1155/2020/8541415
  27. Rizzuto, I., Otter, S. J., Bharathan, R., & Stewart, A. (2020). Vascular endothelial growth factor (VEGF) inhibitors for the treatment of metastatic and recurrent cervical cancer. The Cochrane Database of Systematic Reviews, 5(CD013605): 1-17. https://doi.org/10.1002/14651858.CD013605
  28. Sawada, M., Oishi, T., Komatsu, H., Sato, S., Chikumi, J., Nonaka, M., Kudoh, A., Osaku, D., & Harada, T. (2019). Serum vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 as prognostic biomarkers for uterine cervical cancer. International Journal of Clinical Oncology, 24(12): 1612–1619. https://doi.org/10.1007/s10147-019-01495-x
  29. Scatchard, K., Forrest, J. L., Flubacher, M., Cornes, P., & Williams, C. (2013). Chemotherapy for metastatic and recurrent cervical cancer. The Cochrane Database of Systematic Reviews, 10(CD006469): 1-63 . https://doi.org/10.1002/14651858.CD006469.pub2
  30. Shang, Y., Pan, C., Yang, X., Zhong, M., Shang, X., Wu, Z., Yu, Z., Zhang, W., Zhong, Q., Zheng, X., Sang, L., Jiang, L., Zhang, J., Xiong, W., Liu, J., & Chen, D. (2020). Management of critically ill patients with COVID-19 in ICU: Statement from front-line intensive care experts in Wuhan, China. Annals of Intensive Care, 10(73): 1-24. https://doi.org/10.1186/s13613-020-00689-1
  31. Tang, S., Fan, C., Iroegbu, C. D., Zhou, W., Zhang, Z., Wu, M., Chen, W., Wu, X., Peng, J., Li, Z., & Yang, J. (2021). TMSB4 overexpression enhances the potency of marrow mesenchymal stromal cells for myocardial repair. Frontiers in Cell and Developmental Biology, 9(670913): 1-13. https://doi.org/10.3389/fcell.2021.670913
  32. Tian, Z.-Z., Li, S., Wang, Y., Yue, Y.-J., Zhu, X.-H., Zhao, R., Zhang, C.-L., & Wei, S.-H. (2014). Investigation of uterine arterial chemoembolization and uterine arterial infusion chemotherapy for advanced cervical cancer before radical radiotherapy: a long-term follow-up study. Archives of Gynecology and Obstetrics, 290(1): 155–162. https://doi.org/10.1007/s00404-014-3166-z
  33. Todo, Y., & Watari, H. (2016). Concurrent chemoradiotherapy for cervical cancer: background including evidence-based data, pitfalls of the data, limitation of treatment in certain groups. Chinese Journal of Cancer Research, 28(2): 221–227. https://doi.org/10.21147/j.issn.1000-9604.2016.02.10
  34. Tomao, F., Papa, A., Rossi, L., Zaccarelli, E., Caruso, D., Zoratto, F., Benedetti Panici, P., & Tomao, S. (2014). Angiogenesis and antiangiogenic agents in cervical cancer. OncoTargets and Therapy, 7: 2237–2248. https://doi.org/10.2147/OTT.S68286
  35. Weng, D., Xiong, H., Zhu, C., Wan, X., Chen, Y., Wang, X., Zhang, Y., Jiang, J., Zhang, X., Gao, Q., Chen, G., Xing, H., Wang, C., Li, K., Chen, Y., Mao, Y., Hu, D., Pan, Z., Chen, Q., … Ma, D. (2022). Adjuvant chemotherapy versus adjuvant concurrent chemoradiotherapy after radical surgery for early-stage cervical cancer: a randomized, non-inferiority, multicenter trial. Frontiers of Medicine, 1–12. https://doi.org/10.1007/s11684-021-0892-z
  36. Yetkin-Arik, B., Kastelein, A. W., Klaassen, I., Jansen, C. H. J. R., Latul, Y. P., Vittori, M., Biri, A., Kahraman, K., Griffioen, A. W., Amant, F., Lok, C. A. R., Schlingemann, R. O., & van Noorden, C. J. F. (2021). Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1875(188446): 1-51. https://doi.org/https://doi.org/10.1016/j.bbcan.2020.188446
  37. Yoshida, K., Suzuki, S., Sakata, J., Utsumi, F., Niimi, K., Yoshikawa, N., Nishino, K., Shibata, K., Kikkawa, F., & Kajiyama, H. (2018). The upregulated expression of vascular endothelial growth factor in surgically treated patients with recurrent/radioresistant cervical cancer of the uterus. Oncol Lett, 16(1): 515–521. https://doi.org/10.3892/ol.2018.8610
  38. Zhang, S., Xu, H., Zhang, L., & Qiao, Y. (2020). Cervical cancer: Epidemiology, risk factors and screening. Chinese Journal of Cancer Research, 32(6): 20–728. https://doi.org/10.21147/j.issn.1000-9604.2020.06.05
  39. Zhu, P. F., Ou, Y. J., Dong, Y. H., Xu, P. Z., & Yuan, L. (2016). Expression of VEGF and HIF-Ia in locally advanced cervical cancer: Potential biomarkers for predicting preoperative radiochemotherapy sensitivity and prognosis. OncoTargets and Therapy, 9: 3031–3037. https://doi.org/10.2147/OTT.S104142
  40. Zuo, Y., Chun, B., Potthoff, S. A., Kazi, N., Brolin, T. J., Orhan, D., Yang, H.-C., Ma, L.-J., Kon, V., Myöhänen, T., Rhaleb, N.-E., Carretero, O. A., & Fogo, A. B. (2013). Thymosin ß4 and its degradation product, Ac-SDKP, are novel reparative factors in renal fibrosis. Kidney International, 84(6): 1166–1175. https://doi.org/https://doi.org/10.1038/ki.2013.209

Open Access Copyright (c) 2024 Sains Medika : Jurnal Kedokteran dan Kesehatan
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Sains Medika: Jurnal Kedokteran dan Kesehatan
is published by Faculty of Medicine Universitas Islam Sultan Agung, Indonesia in association with FOKI (FORUM KEDOKTERAN ISLAM INDONESIA).

Contact: Jl. Raya Kaligawe Km.4, PO BOX 1054/SM Semarang 50112, Indonesia
Phone+62 8122-9933-369
Website: https://fkunissula.ac.id
Email: sainsmedika@unissula.ac.id

ISSN: 2339-093X (Online) | 2085-1545 (Print)
DOI : 10.30659/sainsmed

This work is licensed under a Creative Commons Attribution 4.0 International License

Get a feed by atom here, RRS2 here and OAI Links here

apps