Sistem Perkuatan Struktur menggunakan Carbon Fiber Reinforced Polymer (CFRP) Pada Gedung 4 Lantai

¹Rizky Bayu Saputra, ²Antonius, ³Muhamad Rusli Ahyar

1,2,3 Program Studi Teknik Sipil, Fakultas Teknik, Universitas Islam Sultan Agung

*Corresponding Author: Rizkykibay33@gmail.com

Abstrak

Tugas akhir ini mengkaji kelayakan struktur gedung perkantoran 4 lantai dengan kerusakan lentur dan geser pada bagian struktur komponen kolom dan balok tertentu. Salah satu cara untuk meningkatkan kapasitas struktur adalah dengan menggunakan CFRP (Carbon Fiber Reinforced Polymer). CFRP adalah bahan komposit terdiri dari serat dan resin yang diaplikasikan untuk menutupi struktur yang mengalami kegagalan.

Perhitungan Analisa struktur tanpa perkuatan dengan ETABS V18 dimodelkan dengan pembebanan 3D sesuai SNI 1727:2020. Kemudian menganalisa bagian struktur yang rusak yang nantinya akan diperkuat. Berdasarkan hasil yang diperoleh, terdapat kegagalan geser pada balok dan aksial serta momen pada kolom dan balok. Setelah bagian struktur yang mengalami kegagalan ditutupi dengan CFRP HM-60 dengan ketebalan 0,333 mm, 2 lapis kolom dan 2 lapis balok, kekuatan struktural meningkat dengan dimensi, mutu beton dan baja yang sama.

Kata kunci: CFRP; kegagalan struktur; komposit; Retrofitting.

Abstract

This final project examines the feasibility of a 4 floor office building structure with bending and sliding damage to certain parts of the column and beam structural component. One of ways to increase the capacity of the structure is to use CFRP (Carbon Fiber Reinforced Polymer). CFRP is a composite material consisting of fibers and resins that are applied to cover structures that are failured.

Calculation Analysis of structures without concentration use ETABS V18 is modeled with 3D loading according to SNI 1727:2020. Then analyze the damaged parts of the structure that will later be strengthened. Based on the results obtained, there are shear failures on the beam and axial as well as moments on the column and beam. After the failed parts of the structure are covered with CFRP HM-60 with a thickness of 0.333 mm, 2 layers of columns and 2 layers of beams, the structural strength increases with the same dimensions, quality of concrete and steel.

Keywords: structure failure; composites;; Retrofitting.

Universitas Islam Sultan Agung Semarang, 30 januari 2023

ISSN: 2963-2730

1. PENDAHULUAN

Balok merupakan suatu elemen struktur penting dari suatu bangunan, sehingga keruntuhan pada suatu balok merupakan lokasi kritis yang menyebabkan runtuhnya (ccollapse) lantai yang saling berkesinambungan. Keruntuhan balok merupakan hal yang berbahaya yang perlu mendapat penanganan serius, karena keruntuhan kolom akan menimbulkan akibat yang fatal terhadap konstruksi yang telah dibangun, keruntuhan pada balok dapat disebabkan oleh adanya peningkatan gaya gempa yang terjadi pada wilayah dimana struktur tersebut berdiri.

Carbon Fiber Reinforced Polymer (CFRP) merupakan salah satu jenis dari FRP. CFRP digunakan untuk perbaikan dan memperkuat elemen struktur pada konstruksi. Teknik perkuatan menggunakan CFRP dapat dibuat efisien, tidak menyebabkan karat seperti plat baja. Fungsi perkuatan dengan sistem komposit CFRP adalah untuk meningkatkan kekuatan atau memberikan peningkatan kapasitas geser, aksial dan daktilitas, atau berbagai kombinasi lainnya. Daya tahan CFRP yang tinggi lebih ekonomis digunakan pada lingkungan korosif (baja akan mudah berkarat). Penggunaan CFRP akan lebih popular dibandingkan dengan jenis FRP lainnya seperti glass dan aramid.

TINJAUAN PUSTAKA/ LANDASAN TEORI

FRP adalah serat karbon yang didefinisikan sebagai serat yang mengandung setidaknya 90% serat karbon. Serat karbon tidak menunjukkan korosi atau pecah pada suhu kamar. Fungsi perkuatan dengan sistem FRP adalah untuk meningkatkan kekuatan atau memberikan peningkatan kapasitas lentur, geser, axial dan daktilitas. Cara pemasangan FRP adalah dengan melilitkannya mengelilingi permukaan perimeter elemen struktur yang diperkuat dengan menggunakan perekat epoxy resin. Sistem kerjanya sama dengan tulangan transversal konvensional. (Karmila, Agoes, Tavio, 2013)

A. FRP (Fiber Reinforced Polymer)

FRP (Fiber Reinforced polymer) ialah material komposit yang dibuat dari matrik resin polimer kemudian dicampurkan dengan memberikan serat karbon (CFRP) atau serat kaca (GFRP). Material karbon merupakan sebuah alternatif untuk perbaikan dan merehabilitasi suatu struktur dibandingkan menggunakan pelat baja konvensional. Untuk dapat dilihat dari Gambar 2.8.

Gambar 2.1. CFRP (Carbon Fiber Reinforced polymer) Sumber: www.google.com

Universitas Islam Sultan Agung Semarang, 30 januari 2023

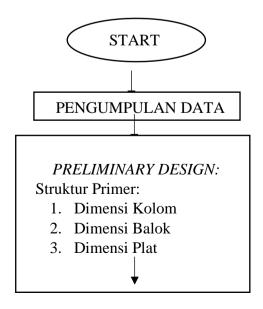
ISSN: 2963-2730

Bagian struktur yang diikat dengan FRP (*Fiber Reinforced Polymer*) harus diikat dengan beton, karena beton merupakan parameter yang paling penting sebagai bahan lekatan kritis termasuk perkuatan lentur atau geser

B. Massa Jenis Material FRP

Perkuatan struktur menggunakan FRP telah berkembang di beberapa negara seperti Amerika Utara, Eropa, dan Jepang. Metode perkuatan ini dikenal sangat efisien, dan tidak mudak berkarat. Penggunaan metode FRP memiliki keuntungan yang didapat seperti mudah diaplikasikan dan ditangani, bobot bahan yang relatif ringan, biaya instalasi dan pemeliharaan yang murah. Keunggulan FRP ini dapat dilihat pada Table 2.1.

Dari Table 2.1 kita dapat mengetahui bahwa massa jenis material FRP berkisar antara 1,2 hingga 2,1 g/cm³, empat sampai enam kali lebih ringan dibandingkan dengan material baja. Karena memiliki sifat yang lebih ringan dan kuat ini menjadikan salah satu alternatif dalam perkuatan beton.


Tabel 2.1 Massa Jenis Material FRP

Baja (g/cm ³)	Kaca (GFRP) (g/cm ³)	Karbon (CFRP) (g/cm ³)	Aramid (AFRP) (g/cm ³)
7,9	1,2 s/d 2,1	1,5 s/d 1,6	1,2 s/d 1,5

Sumber: RSNI 3 Pedoman Perancangan Dan Pelaksanaan Sistem Serat Berperekat Polimer Terlekat Eksternal Untuk Beton.


3. METODOLOGI

Penulisan tugas akhir ini bertujuan untuk memodifikasi atau memperbaiki struktur yang sudah ataupun belum mengalami kerusakan, memperbaiki desain dan mengevaluasi pelaksanan yang kurang dari ketetapan persyaratan. Dengan menggunakan data proyek yang berupa data teknis, data-data yang diperlukan untuk perhitungan dalam pembuatan tugas akhir, dan data dari hasil Loading Test untuk mendukung informasi bangunan yang ditinjau.

Universitas Islam Sultan Agung Semarang, 30 januari 2023

ISSN: 2963-2730

Gambar 3.1 Bagan Alir Desain Struktur

4. HASIL DAN PEMBAHASAN

Data Perencanaan Struktur Dimensi Struktur (Preliminary Design)

1. Pelat

- Pelat 1 : 120 mm Pelat 2 : 100 mm

2. Balok

- Balok B1 : 500 x 250 mm Balok B2 : 300 x 200 mm - Balok B3 : 250 x 150 mm

3. Kolom

- Kolom K1 : 300 x 300 mm - Kolom K2 : 200 x 400 mm

Analisa Pembebanan

1. Beban Mati Berat Sendiri (DL)

- Berat Jenis Material Beton $: 24 \text{ kN/m}^3$ $: 78,5 \text{ kN/m}^3$ - Berat Jenis Baja Tulangan

2. Beban Mati Tambahan (SIDL)

- Beban Pada Pelat Lantai

Universitas Islam Sultan Agung Semarang, 30 januari 2023

ISSN: 2963-2730

Tabel 4.1 Beban Mati Berat Sendiri (DL)

NO	Jenis Beban Mati	Berat jenis (kN/m ³)	Beban Merata (kN/m ²)
1	Finishing Lantai	110	1,1
	0,05 m		
2	Plafon	20	0,20
3	Mekanikal	50	0,50
	elektrikal		
	Total	1,80	

- Beban Akibat Pasangan Dinding

:0,1 kN/m

3. Beban Hidup (LL)

Tabel 4.2 Beban Hidup

No	Jenis Ruangan	Beban Merata (kN/m²)
1	Lavatory	0,20
2	Hall	0,20
3	Ruang Rapat	0,20
4	Ruang Genset	0,20
5	Ruang panel	0,20

Penentu Sistem Penahan Seismik

Gedung yang direncanakan merupakan gedung perkantorN dimana termasuk dalam kategori risiko IV dengan faktor keutamaan gempa = 1,0. Parameter respons spektrum dan penentuan kategori desain seismik ditentukan sesuai dengan SNI 1726-2019 dengan hasil Perhitungan sebagai berikut:

Tabel 4.3 Parameter Respon Spektra

Variabel	Nilai
$F_{ m PGA}$	0,4027
$S_{s}\left(\mathbf{g}\right)$	0,9289
$S_1(g)$	0,4158
TL (detik)	6
S_{DS}	0,71
S_{D1}	0,65

Karena nilai SDS = 0.71 dan SD1 = 0.65 maka diperoleh kategori desain seismik D (KDS D).

Tabel 4.4 Kategori Desain Seismik

Nilai S _{DS}	Kategori risiko			
	I atau II atau	IV		
	III			
$S_{\rm DS}$ < 0,167	A	Α		
$0.167 \leq S_{\rm DS} <$	В	C		
0,33				
$0.33 \le S_{\rm DS} < 0.5$	С	D		
$0.50 \le S_{\mathrm{DS}}$	D	D		

(sumber: Tabel 8 SNI 1726:2019)

Universitas Islam Sultan Agung

Semarang, 30 januari 2023 ISSN: 2963-2730

Tabel 4.5 Kategori Desain Seismik

Nilai S _{D1}	Kategori risiko		
	I atau II atau III	IV	
$S_{\rm D1}$ < 0,067	A	A	
$0.067 \le S_{D1} <$	В	С	
0,133			
$0.133 \le S_{D1} <$	C	D	
0,2			
$0,20 \le S_{\rm D1}$	D	D	

(sumber: Tabel 9 SNI 1726:2019)

Faktor R, Ω_0 , dan C_d Sistem Struktur

- Parameter Sistem Rangka Pemikul Momen Khusus (SRPMK)

Tabel 4.6 Parameter Sistem Rangka Pemikul Momen Khusus (SRPMK)

Parameter Sistem Rangka Pemikul Momen Khusus (SRPMK)						
Faktor koefisien modifikasi	R	8				
Faktor kuat lebih sistem	Ω_0	3				
Faktor pembesaran defleksi	$C_{ m d}$	5,5				

Pemeriksaan Jumlah Ragam

Mengacu pada SNI 1726-2019 dijelaskan bahwa analisis harus meliputi jumlah ragam yang cukup untuk mendapatkan partisipasi massa ragam terkombinasi minimal 100 persen dari massa aktual dalam masing-masing arah horizontal ortogonal dari respons yang ditinjau oleh model. Dari hasil analisis struktur pada program software ETABS menunjukan bahwa jumlah partisipasi massa ragam telah mencapai 100% pada mode ke 40.

Perhitungan Faktor Skala Gaya

Sesuai dengan SNI 1726:2019 Pasal 7.9.2.5.2. Gaya Geser Dasar, V_X dan V_Y harus dihitung untuk arah X dan arah Y sesuai Pasal 7.8.1.1. Untuk tiap gerak tanah yang dianalisis, faktor skala Gaya Geser Dasar ditentukan sebagai berikut:

Tabel 4.7 Rekapitulasi Hasil Pengecekan Faktor Skala

$W_{\rm t}$ (berat total bangunan)	677,529		
V_{X}	547.2024		kN
$V_{ m Y}$		749,338	kN
$V_{ m IX}$	422,2466		kN
$V_{ m IY}$	494,0263		kN
Cek arah X	$V_{\rm IX}\!< V_{ m X}$ Gaya harus dikali skala faktor		
Cek arah Y	$V_{ m IY} \! < V_{ m Y}$	Gaya harus dikali skala faktor	
Faktor skala arah X	1,2959		
Faktor skala arah Y	1,5168		

ISSN: 2963-2730

Simpangan Antar Lantai

Mengacu pada SNI 1726-2019, penentuan simpangan antar lantai tingkat desain (Δ) harus dihitung sebagai perbedaan defleksi pada pusat massa tingkat teratas dan terbawah yang ditinjau. Simpangan antar lantai didapat dari hasil analisis struktur pada program komputer.

Setelah didapat hasil simpangannya maka sesuai SNI 1726-2012 Pasal 7.12.1 bahwa simpangan antar lantai tingkat desain (Δ), tidak boleh melebihi simpangan antar lantai tingkat izin (Δ a) dimana didapat simpangan antar lantai izin sebesar 36,92 mm untuk tingkat 1-2, 35,38 mm untuk tingkat 3-5, dan 36,77 mm untuk Atap dak beton.

Tabel 4.8. Simpangan Antar Lantai Arah X

Lantai	h (mm)	Simpangan Elastis (\delta) (mm)	Perpindahan yang diperbesar (mm)	Simpangan antar tingkat (mm)	Simpangan yang diizinkan (mm)	Ket
Lantai 4	4000	51.37	282.54	33.21	76.92	OK
Lantai 3	5000	45.33	249.33	78.56	96.15	OK
Lantai 2	5000	31.05	170.77	58.12	96.15	OK
Lantai 1	4000	10.57	58.12	58.12	76.92	OK

Tabel 4.9. Simpangan Antar Lantai Arah Y

Lantai	h (mm)	Simpangan Elastis (\delta) (mm)	Perpindahan yang diperbesar (mm)	Simpangan antar tingkat (mm)	Simpangan yang diizinkan (mm)	Ket
Lantai 4	4000	92.67	509.67	-115.60	59.243	OK
Lantai 3	5000	113.69	625.27	-228.83	31.27	OK
Lantai 2	5000	72.08	396.44	-265.42	18.757	OK
Lantai 1	4000	23.82	131.02	-265.42	5.111	OK

Cek Kestabilan Akibat Gempa dan Efektifitas Struktur

Tabel 4.10. Cek Kestabilan Gempa Arah X

Lantai	h _{sx} (mm)	$\Delta_{\mathbf{i}}$ (mm)	<i>P</i> (kN)	V _x (kN)	θ	$ heta_{ ext{max}}$	Cek
Lantai 4	4000	-33.21	879.70	114.27	-0.0116	0.0909	STABIL
Lantai 3	5000	78.56	3806.48	358.91	0.0303	0.0909	STABIL
Lantai 2	5000	58.12	6946.98	500.70	0.0293	0.0909	STABIL
Lantai 1	4000	58.12	10120.92	548.92	0.0487	0.0909	STABIL

Universitas Islam Sultan Agung Semarang, 30 januari 2023 ISSN: 2963-2730

Tabel 4.11.	Cek	Kectahilan	Gemna	Arah V
Tanci 4.11.	C_{CV}	IXEStabilan	Ochiba I	man i

Lantai	h _{sx} (mm)	Δ _i (mm)	P (kN)	V _y (kN)	θ	$ heta_{ ext{max}}$	Cek
Lantai 4	4000	-115.60	879.70	182.25	-0.0254	0.0909	STABIL
Lantai 3	5000	-228.83	3806.48	478.98	-0.0661	0.0909	STABIL
Lantai 2	5000	-265.42	6946.98	674.80	-0.0994	0.0909	STABIL
Lantai 1	4000	-265.42	10120.92	750.92	-0.1626	0.0909	STABIL

Ketidakberaturan Struktur

Struktur harus dikategorikan beraturan atau tidak beraturan berdasarkan kriteria dalam pasal-pasal dalam SNI 1726 2019, yang meliputi ketidakberaturan struktur secara horizontal dan vertikal. Hal ini sesuai dengan Pasal 7.3.2 SNI 1726 2019 yang meliputi klasifikasi bangunan beraturan dan tidak beraturan.

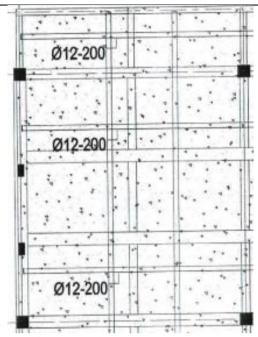
Tabel 4.12. Rekapitulasi Cek Ketidakberaturan horizontal

No	Jenis ketidakberaturan	Keterangan
1	Ketidakberaturan torsi 1a dan 1b	Tidak Ada
2	Ketidakberaturan sudut dalam	Tidak Ada
3	Ketidakberaturan diskontinuitas diafragma	Tidak Ada
4	Ketidakberaturan akibat pergeseran tegak lurus	Tidak Ada
	terhadap bidang	
5	Ketidakberaturan sistem non paralel	Tidak Ada

Tabel 4.13. Rekapitulasi Cek Ketidakberaturan Vertikal

No	Jenis ketidakberaturan	Keterangan				
1	Ketidakberaturan kekakuan tingkat lunak 1a dan 1b	Tidak Ada				
2	Ketidakberaturan berat (Massa)	Tidak Ada				
3	Ketidakberaturan geometri vertikal	Tidak Ada				
4	Ketidakberaturan akibat diskontinuitas bidang pada	Tidak Ada				
	elemen vertik.al pemikul gaya lateral					
5	Ketidakberaturan sistem non paralel	Tidak Ada				

Desain Penulangan Pelat


Pada program analisis struktur, pelat dimodelkan dengan bentuk shell dimana pelat dirancang menerima beban vertikal dan beban horizontal. Pelat lantai merupakan komponen struktur lentur. Pelat direncanakan sesuai dengan kebutuhannya pada tiap lantai 1-5 dengan ketebalan 13 mm dan untuk atap dengan ketebalan 12 mm.

Tabel 4.14. Rekapitulasi Penulangan Pada Pelat Lantai

Dala4	$L_{\rm x}$	$L_{\rm v}$	Amala	Tum	ipuan	Lapangan		
Pelat	(m)	(m)	Arah	Atas	Bawah	Atas	Bawah	
S1 5,	5.5	6	X	D12-150	D12-200	D12-200	D12-200	
	3,3	6	Ü	Y	D12-150	D12-200	D12-200	D12-200
S2 5	5.5	5.5	X	D12-150	D12-200	D12-200	D12-200	
	5,5	5,5	5,5	6	Y	D12-150	D12-200	D12-200

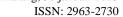
Universitas Islam Sultan Agung Semarang, 30 januari 2023

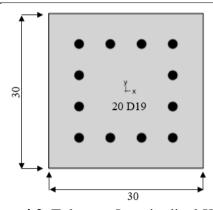
ISSN: 2963-2730

Gambar 4.1 Penulangan Pelat

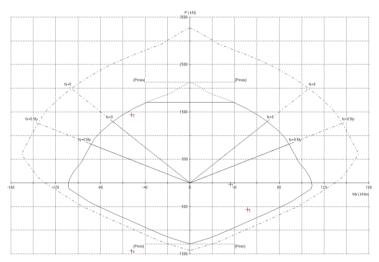
Desain Penulangan Balok

Sistem penahan gaya gempa yang dij pada SNI 2847 2019 pasal 18.6.1.1, termasuk balok sistem rangka tahan momen khusus (SRPMK) yang pada prinsipnya didesain untuk dapat menahan lentur geser dan memiliki batasan dimensi yang tercantum dalam pasal 18.6.2.1. Hasil perhitungan tulangan pada balok ditinjau dengan satu sempel balok dengan rincian sebagai berikut:


Tabel 4.15 Rekapitulasi Penulangan Pada Balok


Balok	Dimensi	Lokasi	Tulangan I	Longitudinal	Tulangan	Transversal
Kode	(cm)	Lokasi	Tumpuan	Lapangan	Tumpuan	Lapangan
D 1	B1 25 × 50	Atas	9 D16	3 D16	8D10-150	9D10 200
DI		Bawah	3 D16	9 D16	9D10-130	8D10-200

Desain Penulangan Kolom


Sistem penahan gaya gempa yang dijelaskan pada SNI 2847 2019, meliputi kolom dengan sistem rangka pemikul momen Khusus (SRPMK) yang terutama dibuat untuk menangani gaya lentur, geser, dan aksial. Hasil perhitungan tulangan pada kolom ditinjau dengan satu sempel kolom dengan rincian sebagai berikut:

Luas tulangan longitudinal tidak diizinkan kurang dari 0,01Ag dan tidak lebih dari 0,06Ag sesuai SNI 2847:2019 Pasal 18.7.4.

Gambar 4.2. Tulangan Longitudinal Kolom K1

Gambar 4.3. Diagram Interaksi P_n-M_{pr} SPColumn Kolom K1

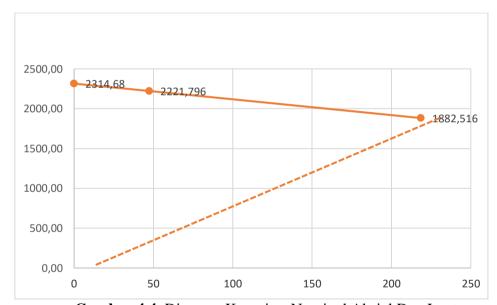
Tabel 4. 16. Hasil Analisis Interaksi P_n - M_{pr} Kolom K1

No	P _u (kN)	M _{ux} (kN m)	$\phi M_{\rm nx}$ (kNm)	$\phi M_{ m n}/M_{ m u}$	NA depth (mm)	dt depth (mm)	\mathcal{E}_{t}	φ
1	-1437.2	-52	-22.83	0.439	32	241	0.01961	0.9

Tabel 4.17. Rekapitulasi Tulangan Kolom

No Tipe		Dimensi	Tulangan	Tulangan Geser		
110	Kolom	Kolom	Pokok	Tumpuan	Lapangan	
1	K1	300×300	20 D19	8 D19-150	8 D19-150	

Perkuatan CFRP


Hasil dari output yang telah didapatkan secara otomatis dari software ETABS V.18 dapat diketahui gaya-gaya yang bekerja pada setiap struktur kolom dan balok. Namun untuk mengetahui kolom dan balok yang kita desain tersebut aman atau tidak perlu dihitung tiap batang apakah struktur yang dibuat aman ketika menerima beban. Karena frame atau batang terlalu banyak dan membutuhkan waktu untuk memperhitungkannya maka perlu analisis kembali menggunakan software ETABS V.18

ISSN: 2963-2730

Perkuatan CFRP Pada Kolom

Tabel 4.18. Detail CFRP

Kekuatan Tegangan Tarik Ultimit Terjamin (f _{fu})	3792 MPa
Modulus Elastisitas (E)	227527 MPa
Regangan (ASTM D3039) (ε)	0,0167 mm/mm
Kekuatan Lentur (ASTM D7264)	1000 MPa
Kekuatan Geser (ASTM D2344)	80 MPa
Daya Lekat Beton Dengan FRP	≥ 2,5 ,kohesi dengan beton
Massa Jenis	1,8 g/cm ³
Tebal CFRP (t _f)	0,333 mm
Jumlah Lapis FRP nf	2

Gambar 4.4. Diagram Kapasitas Nominal Aksial Dan Lentur

Perkuatan Pada Balok Menggunakan CFRP

Tabel 4.19. Dimensi Dan Material Data

h (mm)	500
b (mm)	250
Ln (mm)	5,700
dp (mm)	452
f'c (Mpa)	25
n	3
n'	3
Ø (mm)	16
Ø' (mm)	10

Universitas Islam Sultan Agung Semarang, 30 januari 2023

ISSN: 2963-2730

fy (Mpa)	420
Es (Mpa)	200,000
Ketebalan per lapis tf (mm)	0.33
Jumlah Lapisan nf	2
Lebar Lapisan (mm)	250
Ef (N/mm ²)	227527
ffu (N/mm ²)	3792
ffe (N/mm ²)	1137.6
Rupture Strain εfu mm/mm	0.0159

KESIMPULAN

Berdasarkan proses pengerjaan yang dialami penulis pada saat melakukan analisis desain ini, ada beberapa saran agar pengembangan dalam laporan Tugas Akhir Desain Perkuatan Struktur Menggunakan CFRP vaitu:

- a. Peraturan peraturan yang dipakai pada analisis perkuatan ini mengacu pada RSNI 3 "Pedoman Perancangan dan Pelaksanaan Sistem Serat Berperekat Polimer Terlekat Eksternal Untuk Struktur Beton". Oleh karena itu, diharapkan dapat menggunakan acuan perhitungan yang up to date.
- b. Dalam pendesainan dengan menggunakan software ETABS perlu dilakukan secara teliti agar hasil yang didapat sesuai.
- c. Alangkah baiknya dalam pengerjaan Tugas Akhir ini penulis lebih banyak belajar tentang sistem perkuatan untuk struktur beton.

DAFTAR PUSTAKA

- Atmadja, H. S., & Maulana, S. A. (2017). Redesign Gedung Training Centre II Universitas Diponegoro Kota Semarang. (Tugas Akhir, Universitas Islam Sultan Agung).
- Budiono, Bambang dkk. (2017). Contoh Desain Bangunan Tahan Gempa. Bandung: ITB Press.
- Fadli, M. H. (2015). Aplikasi ETABS pada Perancangan Gedung 15 Lantai dengan Struktur Beton Bertulang Menggunakan Sistem Ganda (Dual System) Sebagai Penahan Beban Gempa Sesuai Standard Code SNI 1726:2012. Jakarta, Indonesia.
- Musthofa, E., & Fasikhullisan. (2019). Perencanaan Gedung Enam Tingkat Rumah Sakit Royal Biringkanaya di Makasar Berdasarkan SNI 1726-2012. (Tugas Akhir, Universitas Islam Sultan Agung).
- Nasional, B. S. (2019). SNI 1726-2019: Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung. Jakarta: Badan Standarisasi Nasional, 693.

Universitas Islam Sultan Agung Semarang, 30 januari 2023

ISSN: 2963-2730

- Nasional, B. S. (2019). SNI 2847-2019: Persyaratan Beton Struktural untuk Bangunan Gedung dan Penjelasanya. Jakarta: Badan Standarisasi Nasional, 694.
- Nasional, B. S. (2020). SNI 1727-2020: Beban Desain Minimum dan Kriteria Terkait untuk Bangunan Gedung dan Struktur Lain. Jakarta: Badan Standarisasi Nasional, 235.
- PU, Puskim. (2021). Desain Spektra Indonesia. http://rsa.ciptakarya.pu.go.id/2021.
- Putra, Rozy B. A. & Budiyanto, S. (2022). Redesain Struktur Gedung Dua Belas Lantai Berdasarkan SNI 1726-2019 (Studi pada Struktur Gedung FT-MIPA UNIMUS Semarang). (Tugas Akhir, Universitas Islam Sultan Agung).
- Reza, Alif Muhammad. (2021, 13 Januari). Penulangan Balok. 8 Minutes Learn, https://youtu.be/iWj6L-jefoU.
- Reza, Alif Muhammad. (2021, 27 Januari). Penulangan Dinding Geser. 8 Minutes Learn, https://youtu.be/OvmMcXg0hVU.
- Reza, Alif Muhammad. (2022, 1 September). Desain Penulangan Lentur Pelat. 8 Minutes Learn, https://youtu.be/q7AhrEsfZOE.
- Setiawan, Agus. (2020, 16 Juli). Desain Kolom SRPMK #1 Sesuai SNI Beton Terbaru. Agus Setiawan, https://youtu.be/Uyu_sS2Ixpw.
- Setiawan, Agus. (2020, 29 Juli). Bagaimana Cara Mendesain Kolom SRPMK ? #2 Contoh Soal. Agus Setiawan, https://youtu.be/GEF6-xvf3Ks.
- Sofian, A., & Arrosyid, A. (2019). Analisis Perbandingan Sistem Ganda dan Sistem Rangka Pemikul Khusus pada Desain Struktur Gedung Asrama Mahasiswa Unimus di Semarang. (Tugas Akhir, Universitas Islam Sultan Agung).
- Menna et al. 2013. Assessment of Ecologycal Sustainability of a Building
- Subjected to Potential Seismic Events During Lifetime. The International Journal of Life Cycle Assessment, V.18. No.2, pp. 504-515, doi: 10. 1007/s11367-012-0477-9
- Babay , N.I et al. 2012. Studi Perkuatan Kolom Bulat Beton Bertulang Dengan Menggunakan GFRP Sheet 2 Lapis. Makasar : Fakultas Teknik Universitas Hasanudin.
- RSNI 3 Pedoman Perancangan dan Pelaksanaan Sistem Serat Berperekat Polimer Terlekat Eksternal Untuk Struktur Beton
- Gilbert, R.I. dan Mickleborough, N.C, 1990. Design of Prestressed Concrete.

Sydney: Unwin Hyman, Ltd

Universitas Islam Sultan Agung Semarang, 30 januari 2023 ISSN: 2963-2730

Kumahara et al. 1993. Tensile Strength of Continuous Fiber Bar Under High

- Temperature. International Symposium on Fiber- Reinforced Plastic Reinforcement for Concrete Sructures, SP-138, A.Nanni and C, W.Dolan, eds, American Concrete Institute, Farmington Hills, MI, pp. 731-742.
- D., Agung, I. S., Arifudzaky, S., & Andhika, T. (2020). Tugas Akhir Desain Perkuatan Struktur Menggunakan Cfrp (Carbon Fiber Reinforced Polymer)
- Putri, A.P dk., (2022). Comparative Study Of Changes in SNI 1727 (2013-2020) and SNI 1726 (2012 2019). JACEE (Journal of Advanced Civil and Environmental Engineering), 5(2), 74-83.
- Darmayadi, D. & Ahyar, M. R. (2018). Element Modeling of Masonry Wall With Opening Under Lateral Force. JACEE (Journal of Advanced Civil and Environmental Engineering), 1(2), 71-74.