Artificial Neural Network Method for Predicting Compressive Strength of Normal Concrete
Abstract
Lombok Island is an archipelago that has a source Natural resources such as sand and gravel are abundant. This material is one of the components of concrete. Concrete is a frequently used material in Indonesia. Compressive strength testing of concrete typically requires a large number of samples and a considerable amount of time. To expedite and simplify this process, researchers employ computer-based intelligence techniques, namely the Artificial Neural Network (ANN) method. This research involved a series of laboratory tests for normal concrete's compressive strength. The obtained data was then processed using MATLAB with the ANN modeling method for training. The research results indicated a Mean Absolute Percentage Error (MAPE) of 0.02% during the training process and 1.54% during testing. This demonstrates that the developed ANN modeling exhibits a high level of accuracy with low error. Therefore, the empirical formula obtained can be used for predicting the compressive strength of normal concrete with a good degree of precision.
References
Anggara, R. D., & Fauzan, A. (2022). Pengaruh kuat tekan beton Fc 10,38 MPa dengan penggunaan steel fiber sejumlah 1,5% dari agregat kasar.
Evangelista, L., & Brito, J. (2019). Durability of crushed fine recycled aggregate concrete assessed by permeability-related properties. Journal of Materials in Civil Engineering. https://doi.org/10.1680/jmacr.18.00093
Amelia, R., Suhendra, S., & Amalia, K. R. (2021). Hubungan faktor-faktor yang mempengaruhi kuat tekan beton. Jurnal Talenta Sipil, 4(2), 225. https://doi.org/10.33087/talentasipil.v4i2.79
Hafizh, M. I. (2021). Pengaruh variasi waktu dan suhu perawatan terhadap mortar geopolimer dengan abu terbang.
Shahmansouri, A. A. (2022). The prediction analysis of compressive strength and electrical resistivity of environmentally friendly concrete incorporating natural zeolite using ANN.
Zhao, Y., Hu, H., Song, C., & Wang, Z. (2022). Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network.
Prasetiawan, J. (2019). Optimasi dimensi balok struktur portal beton 3D bangunan kantor tiga lantai dengan metode artificial neural network.
Prasetiawan, J. (2022). Prediksi optimasi dimensi balok kolom bangunan masjid dengan metode artificial neural network.
Prathama, A. Y. (2018). Pendekatan ANN untuk penentuan prosentase bobot pekerjaan dan estimasi nilai pekerjaan struktur pada rumah sakit pratama.
Rahmadi, N. H. (2015). Prediksi nilai rating factor jembatan komposit baja-beton dengan menggunakan artificial neural network.
Muliauwan, H. N. (2020). Prediction of concrete compressive strength using artificial intelligence methods.
DOI: http://dx.doi.org/10.30659/jacee.7.2.%25p
Refbacks
- There are currently no refbacks.
JACEE (Journal of Advanced Civil and Environmental Engineering)
is published by Fakultas Teknik Universitas Islam Sultan Agung, Indonesia, in collaboration with Federation Internationale du Beton (fib).
Jl. Raya Kaligawe Km.4, PO BOX 1054/SM Semarang 50112
Website: https://ft.unissula.ac.id/
Email: jacee@unissula.ac.id
ISSN: 2599-3356 (Online)
DOI : 10.30659/jacee
This work is licensed under a Creative Commons Attribution 4.0 International License