Structure Design of Parking Building on Delta Areas

Ir. Bambang Wuritno, MT
Civil Engineering Department of 17 Agustus 1945 Semarang University
Jl. Pawiyatan Luhur Bendan Dhuwur Semarang
e-mail : bwuritno@yahoo.co.id

Abstract: The case study in this research is Parking building (Tower C), Project Sunter Park View Apartment is a public facility that serves as a parking garage. It located on the Yos Sudarso Street Kav 30A, Sunter Jaya – North Jakarta (on Delta Areas). This building consists of 4 floors including the roof plate with a typical floor plan for each level. Floor to floor elevation is 3 meters height, so the total height of the building reach 9 meters height (less than 40 meters height). Review Design Parking building structure (Tower C) Project Title: “Structure Design OfParking Building Sunter Park View Apartment With The Equivalent Static Analysis Method”, wherein the influence of earthquakes on structures analyzed by Equivalent Static method based on the Standard Provisions Design for Earthquake Resistance of Building Structures (SNI 03-1726-2002).

Structural components of buildings designed by Special Moment Frame System Bearers (SRPMK) based on Procedure for Calculation of Concrete Structure for Buildings (SN03-2847-2002). Foundations including the type of float because the soil under the foundation as a whole is a soft clay

Keywords: Design, Parking Building, Equivalent Static Analysis Method, Special Moment Frame Structure bearers (SRPMK), soft clay

1. Introduction

1.1 Background
To avoid human victims caused by the collapse of the building due to the strong earthquake, it required construction of earthquake resistant buildings. Standard Design for Earthquake Resistance of Building Structures (SNI 03-1726-2002) define a concept of Capacity Design (Capacity Design), wherein the structure of the building is planned to have sufficient ductility level with the formation of plastic joints in the structure of the building, so that the structure remains to standing despite of being in a state on the verge of collapse.

1.2 Building Location
It located on the Yos Sudarso Street Kav 30A, Sunter Jaya – North Jakarta.

1.3 Aim and Purpose
Able to designing the building structure with the equivalent static analysis methods, with Special Moment Frame Systems bearer design based on SNI 03-1726-2002 and SNI 03-2847-2002.
1.4 Problem Restriction

Problem restriction of Project:

1. The building structure is designed by Frame System bearers of reinforced concrete moment.
2. Buildings located in North Jakarta area (Earthquake Regional 3).
3. Regular building structures category.
5. Ductility level full planned with the Special Moment Frame System bearers (SRPMK).
6. Design structures viewed:

2. Literature Study

2.1 Earthquake

Earthquakes can cause vibration. Mechanical energy due to damage of the rocks structure in the earthquake event then will be turned into energy waves that vibrate the surrounding rocks. Rocks vibration due to the earthquake will subsequently forwarded by the media to the soil surface. Ground shaking caused by the earthquake will lead to the building on the ground get shaking too. The buildings damage may occur due to that vibration.

2.2 Earthquake Area and Response Spectrum

Regulation of the Indonesian Earthquake SNI 03-1726-2002, divides Indonesia into 6 Regional Earthquake (WG). It based on the acceleration of peak bedrock due to the influence of the Earthquake Plan with 500 years return period, which is average value for each Region Earthquake (WG) as shown in Picture of 2.1.

Picture 2.1. Indonesia Earthquake Regional and Response Spectrum For Earthquake Regional Plan 3
2.3 The Plan Of Earthquake and Primacy Buildings Factor

Effect of the plan of earthquake must be multiplied by a primacy buildings factor to adjust the probability occurrence of collapse of the building structure during the ages of the building and the expected ages of the building. The primacy factor I determined by the equation:

\[I = I_1 I_2 \] (2.1)

The primacy factors \(I_1 \) and \(I_2 \) defined in the Table-1 Standard Design for Earthquake Resistance of Building Structure SNI 03-1726-2002.

2.4 Structure Ductility and Earthquake Reduction Factor

Building structural ductility factor value \(\mu \), earthquake reduction factor, \(R \), when design the building structure can be selected according to the needs, but shouldn't be taken more greater than the value of the maximum ductility factor \(\mu_m \) which can be deployes by each of system or subsystem building structures contained in table of 2.3. (Table 3 SNI 03-1726-2002)

2.5 Structure System for Earthquake Load

Based on SNI 03-1726-2002 Frame System moment bearers is a system structure that basically has framework of a complete gravity loadbearing. Lateral load borne by the bearers moments frame, especially through flexible mechanisms.

2.6 Building Structure Category

For regular building structures, the influence of the Plan of Earthquake can be viewed as the equivalent static earthquake load effects, so according to SNI 03-1726-2002 standard analysis can be performed based on equivalent static analysis

2.7 Regular Building Structure Design

Based on SNI 03-1726-2002 Clause 6.1.2 states that if the building has a Primacy Factor I according to Table 1 (SNI 03-1726-2002) and its structure to direction main axis structure plan and direction of loading plan of earthquake had a reduction earthquake factor \(R \) and fundamental natural vibration period \(T_1 \), then the load base shear nominal equivalent static \(V \) which is happening at the ground level can be calculated according to the equation:

\[V = \frac{C_1 I}{R} W_t \] (2.2)

wherein:

\(C_1 = \) Earthquake response factor values obtained from the response spectrum of the plan of earthquake according to Picture 2 (SNI 03-1726-2002) for the fundamental natural vibration period \(T_1 \),

\(I = \) Primacy Buildings Factor, Table 1 (SNI 03-1726-2002),

\(W_t = \) total weight of the building including suitable live load.
Based on SNI 03-1726-2002 Clause 6.1.3 states that the nominal base shear load V according to Clause 6.1.2 should be distributed along the height of the building structure into equivalent static nominal earthquake loads F_i that captures the center of mass of the i-th floor level according to the equation:

$$F_i = \frac{W_i z_i^2}{\sum W_i z_i^2} V$$

wherein:

$W_i =$ weight of the i-th floor level, including suitable live load
$z_i =$ the height of the i-th floor level measured from lateral clamping level according to Section 5.1.2 and Section 5.1.3 (SNI 03-1726-2002).
$V =$ the load base shear nominal static equivalent
$n =$ number of top level floor.

3. Methodology

3.1 Compiling of The Final Project Flowchart

This compiling of the Final Project methodology are shown in picture of 3.1

![Picture of 3.1 Compiling of The Final Project Flowchart](image-url)
4. STRUCTURE CALCULATION

4.1 Overview
Guidelines used in the analysis and design of structural components refer to: Standard Design for Earthquake Resistance of Building Structures (SNI 03-1726-2002) and Procedure for Calculation of Concrete Structure for Buildings (SNI 03-2847-2002.)

4.2 Description of Building Plan
Building siteplan and section are shown in Picture of 4.1 and 4.2.

With reference from the provisions of Clause 4.2 SNI 03-1726-2002, parking building has a regular structure. For regular building structures, the influence of Plan of Earthquake can be viewed as the equivalent static earthquake load effect, so the analysis can be performed based on equivalent static analysis.
4.3 Structure Analysis

Effect of earthquakes on structures made with Equivalent Static analysis methods with the aid of SAP2000 programme.

4.3.1 Modeling structure in SAP2000

The structure is modeled as an open framework structure (Open Frame). Columns and beams are modeled as frame elements. Pedestal at the base of the structure is modeled as a clips footstool. Specification of structural components used in the modeling of the structure shown in Table 4.1.

<table>
<thead>
<tr>
<th>Components</th>
<th>Dimension</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECONDARY BEAM</td>
<td>25 X 40 cm</td>
<td>f’c = 30 Mpa</td>
</tr>
<tr>
<td>MAIN BEAM</td>
<td>25 X 50 cm</td>
<td>f’c = 30 MPa</td>
</tr>
<tr>
<td>COLUMN</td>
<td>40 X 40 cm</td>
<td>f’c = 40 MPa</td>
</tr>
</tbody>
</table>

On Picture of 4.3 shows the result of modeling the structure from the SAP2000 programme.

4.3.2 Structure Loading

Load combinations that were reviewed in the analysis is determined by a strong need, SNI 03-2847-2002 Clause 11.2 as follows:

- COMB 1 = 1.4 D
- COMB 2 = 1.2 D + 1.6 L + 0.5R
- COMB 3 = 1.2 D + L + 1.6 W + 0.5 R
- COMB 4 = 0.9 D + 1.6 W
- COMB 5 = 1.2 D + 1 L + Ex + 0.3 Ey
- COMB 6 = 1.2 D + 1 L + Ey + 0.3 Ex
- COMB 7 = 0.9 D + Ex + 0.3 Ey
- COMB 8 = 0.9 D + Ey + 0.3 Ex

Wherein:

- D = Dead Load
- L = Live Load
- W = Wind Load
- R = Rain Load
- Ex dan Ey = Earthquake load in X-direction and Y-direction
4.3.3 The Nominal Equivalent Static Earthquake Load

Time vibrating structures obtained by 3 Dimensional free vibration analysis get $T_1 = 0.5322 \text{ dt}$, using the response spectrum of the plan of earthquake, Earthquake Regional 3 – Soft soil, obtained:

$$C = \frac{0.75}{T} = \frac{0.75}{0.5322} = 1.4092$$

From the calculations result obtained the data analysis:
- Primacy Structure Factor, $I = 1$
- Earthquake Reduction Factor, $R = 8.5$
- Spectrum Response, $C = 1.4092$
- Building Total Weight, $W = 1396 \text{ ton}$ (Structure Total Weight + load)

So the base shear load, V for each direction of loading obtained:

$$V_x = C \cdot I \cdot W_t / R$$
$$V_x = 1.4092 \times 1 \times 1396 / 8.5$$
$$V_x = 231.44 \text{ ton}$$

The value of equivalent static load (F_i) at the i-th level is obtained:

For each joint in the direction of loading (X-Direction and Y), F_i must be divided by the number of portals on each direction of loading.

Table 4.2 Calculation of equivalent static loads at each level and Joint

<table>
<thead>
<tr>
<th>Floor</th>
<th>Weight (t)</th>
<th>Height (m)</th>
<th>$W_i \times z_i$</th>
<th>$V_x = V_y(t)$</th>
<th>$F_i(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th Floor</td>
<td>465.4</td>
<td>9</td>
<td>4188.46</td>
<td>231.44</td>
<td>115.72</td>
</tr>
<tr>
<td>3rd Floor</td>
<td>465.4</td>
<td>6</td>
<td>2792.30</td>
<td>231.44</td>
<td>77.147</td>
</tr>
<tr>
<td>2nd Floor</td>
<td>465.4</td>
<td>3</td>
<td>1396.15</td>
<td>231.44</td>
<td>38.573</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>8376.91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Floor</th>
<th>F_i (ton)</th>
<th>Loading X-Direction $F_i / (8 \text{ Portal})$ (ton)</th>
<th>Loading Y-Direction $(F_i / 4 \text{ Portal})$ (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th Floor</td>
<td>115.72</td>
<td>14.46</td>
<td>28.93</td>
</tr>
<tr>
<td>3rd Floor</td>
<td>77.14</td>
<td>9.64</td>
<td>19.28</td>
</tr>
<tr>
<td>2nd Floor</td>
<td>38.57</td>
<td>4.82</td>
<td>9.64</td>
</tr>
</tbody>
</table>

For each portal in the direction of loading (X-Direction and Y), can be showed:
5. Ending

Special Moment Frame systems bearers (SRPMK) as planned in the Parking Building (Tower C) Sunter Park View Apartment, guarantee it structure to ductile behave with plastic hinge formation during a strong earthquake. Guidelines used in the analysis and design of structural components refer to: Standard Design for Earthquake Resistance of Building Structures (SNI 03-1726-2002) and Procedure for Calculation of Concrete Structure for Buildings (SNI 03-2847-2002.)

5.1 Conclusion

From calculations that have been done based on the configuration of the structure and specification of design, structural reinforcement obtained results as follows:

Floor Plate Reinforcement

For plates which clip on all four sides moments per meter width is obtained a follows:

- X-Direction Field Moment : \(M_{lx} = 5540500 \text{ Nmm} \)
- Y-Direction Field Moment : \(M_{ly} = 1696000 \text{ Nmm} \)
- X-Direction Pedestal Moment : \(M_{tx} = -8819600 \text{ Nmm} \)
- Y-Direction Pedestal Moment : \(M_{ty} = -6105900 \text{ Nmm} \)

Dimension : X-direction = 3 m, Y-direction = 5 m, Thickness : 12 cm

Concrete Quality : \(f'_c = 30 \text{ Mpa} \), Reinforcement Quality: \(f_y = 400 \text{ MPa} \)

- X-Direction Pedestal Reinforcement: D10-200
- Y-Direction Pedestal Reinforcement: D10-250
- X-Direction Field Reinforcement: D10-200
- Y-Direction Field Reinforcement: D10-250

Stairs Plate Reinforcement

Moments at stairs plate:

- X-direction pedestal moment: \(= 4883940 \text{ Nmm} \)
- X-direction field moment: \(= 2521310 \text{ Nmm} \)
- Y-direction pedestal moment: \(= 9578120 \text{ Nmm} \)
- Y-direction field moment: \(= 5083000 \text{ Nmm} \)

Dimension: X-direction = 5 m, Y-direction = 3 m, Thickness : 14 cm
Concrete Quality: \(f'_c = 30 \text{ Mpa} \), Reinforcement Quality: \(f_y = 400 \text{ MPa} \)

X-direction pedestal reinforcement: D13-200
Y-direction pedestal reinforcement: D13-250
X-direction field reinforcement: D13-200
Y-direction field reinforcement: D13-250

Main Beam Reinforcement

Results of the structural analysis of the beam inner forces displayed on Table 5.2

<table>
<thead>
<tr>
<th>Output/Cases</th>
<th>Step Type</th>
<th>(P)</th>
<th>(V_2)</th>
<th>(V_3)</th>
<th>(T)</th>
<th>(M_2)</th>
<th>(M_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVELOPE Max</td>
<td>2.283E-10</td>
<td>151079.09</td>
<td>2.373E-12</td>
<td>1679036.52</td>
<td>0.000000006</td>
<td>169172366.7</td>
<td></td>
</tr>
<tr>
<td>ENVELOPE Min</td>
<td>-4.567E-10</td>
<td>-144749.7</td>
<td>-1.8E-11</td>
<td>-16851635.1</td>
<td>-3.576E-08</td>
<td>-255211639</td>
<td></td>
</tr>
</tbody>
</table>

Dimension: 250 x 500 mm, Length: 5 dan 6 m
Concrete Quality: \(f'_c = 30 \text{ Mpa} \), Reinforcement Quality: \(f_y = 400 \text{ MPa} \)
Pedestal Reinforcement: Above = 6D22, Below = 4D22, Cross bar = 4D10-100
Field Reinforcement: Above = 2D22 + 1D16, Below = 4D22, Cross bar = 3D10-150

Column Reinforcement

<table>
<thead>
<tr>
<th>Frame</th>
<th>Station</th>
<th>(P)</th>
<th>(V_2)</th>
<th>(V_3)</th>
<th>(T)</th>
<th>(M_2)</th>
<th>(M_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>0</td>
<td>COMB1</td>
<td>-76.49</td>
<td>-0.14</td>
<td>-0.08</td>
<td>0.00</td>
<td>-0.16</td>
</tr>
<tr>
<td>26</td>
<td>1.5</td>
<td>COMB1</td>
<td>-77.30</td>
<td>-0.14</td>
<td>-0.08</td>
<td>0.00</td>
<td>-0.04</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>COMB1</td>
<td>-78.10</td>
<td>-0.14</td>
<td>-0.08</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>COMB2</td>
<td>-129.80</td>
<td>-0.24</td>
<td>-0.13</td>
<td>0.00</td>
<td>-0.26</td>
</tr>
<tr>
<td>26</td>
<td>1.5</td>
<td>COMB2</td>
<td>-130.49</td>
<td>-0.24</td>
<td>-0.13</td>
<td>0.00</td>
<td>-0.07</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>COMB2</td>
<td>-131.18</td>
<td>-0.24</td>
<td>-0.13</td>
<td>0.00</td>
<td>0.12</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>COMB3</td>
<td>-106.01</td>
<td>-1.18</td>
<td>0.67</td>
<td>0.00</td>
<td>0.74</td>
</tr>
<tr>
<td>26</td>
<td>1.5</td>
<td>COMB3</td>
<td>-106.70</td>
<td>-1.18</td>
<td>0.67</td>
<td>0.00</td>
<td>-0.26</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>COMB3</td>
<td>-107.39</td>
<td>-1.18</td>
<td>0.67</td>
<td>0.00</td>
<td>-1.26</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>COMB4</td>
<td>-49.16</td>
<td>-1.07</td>
<td>0.72</td>
<td>0.00</td>
<td>0.85</td>
</tr>
<tr>
<td>26</td>
<td>1.5</td>
<td>COMB4</td>
<td>-49.67</td>
<td>-1.07</td>
<td>0.72</td>
<td>0.00</td>
<td>-0.23</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>COMB4</td>
<td>-50.19</td>
<td>-1.07</td>
<td>0.72</td>
<td>0.00</td>
<td>-1.32</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>COMB5</td>
<td>-105.82</td>
<td>-8.50</td>
<td>2.18</td>
<td>0.02</td>
<td>2.54</td>
</tr>
<tr>
<td>26</td>
<td>1.5</td>
<td>COMB5</td>
<td>-106.51</td>
<td>-8.50</td>
<td>2.18</td>
<td>0.02</td>
<td>-0.72</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>COMB5</td>
<td>-107.20</td>
<td>-8.50</td>
<td>2.18</td>
<td>0.02</td>
<td>-3.99</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>COMB6</td>
<td>-104.05</td>
<td>-2.69</td>
<td>7.64</td>
<td>0.00</td>
<td>9.11</td>
</tr>
<tr>
<td>26</td>
<td>1.5</td>
<td>COMB6</td>
<td>-104.75</td>
<td>-2.69</td>
<td>7.64</td>
<td>0.00</td>
<td>-2.35</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>COMB6</td>
<td>-105.44</td>
<td>-2.69</td>
<td>7.64</td>
<td>0.00</td>
<td>-13.81</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>COMB7</td>
<td>-49.80</td>
<td>-8.40</td>
<td>2.23</td>
<td>0.02</td>
<td>2.65</td>
</tr>
<tr>
<td>26</td>
<td>1.5</td>
<td>COMB7</td>
<td>-50.32</td>
<td>-8.40</td>
<td>2.23</td>
<td>0.02</td>
<td>-0.70</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>COMB7</td>
<td>-50.84</td>
<td>-8.40</td>
<td>2.23</td>
<td>0.02</td>
<td>-4.05</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>COMB8</td>
<td>-48.04</td>
<td>-2.58</td>
<td>7.69</td>
<td>0.00</td>
<td>9.22</td>
</tr>
<tr>
<td>26</td>
<td>1.5</td>
<td>COMB8</td>
<td>-48.56</td>
<td>-2.58</td>
<td>7.69</td>
<td>0.00</td>
<td>-2.32</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>COMB8</td>
<td>-49.07</td>
<td>-2.58</td>
<td>7.69</td>
<td>0.00</td>
<td>-13.86</td>
</tr>
</tbody>
</table>

Dimension: 400 x 400 mm
Concrete Quality: \(f'_c = 40 \text{ Mpa} \), Reinforcement Quality: \(f_y = 400 \text{ MPa} \)
Pedestal Reinforcement: D12D25, Cross bar = 5D12 - 100
Field Reinforcement: D12D25, Cross bar = 5D12 – 150, Length of connection: 1000mm

XXX-9
Foundation
Foundation is planned to use a pile, because hard soil is located on the 18m depth from the soil surface. Number of piles used 3 pieces. Foundations including the type of "float" because the soil under the foundation as a whole is a soft clay. Pile cap reinforcement design as shown in Picture of 5.6 below:

References
Rachmat Purwono, 2005, Perencanaan Struktur Beton Bertulang tahan Gempa, itspress