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Abstract-Application of entropy in open channel models presenting relevant aspects of 
theoretical issues and practical useful for cross-sectional velocity distribution. The ratio between 
the average velocity and the maximum depends on the local morphology. Recent research has 
suggested formulation Manning roughness, n, based on the ratio and the ratio between the position 
where the velocity is zero and the maximum, y0/ymax, the flow depth of the flow regime. Based on 
the experience of stable flow, analysis entropy dependence on n parameters, and M for flow depth, 
proposes an equation y0/ymax to know the bed channel roughness coefficient. The results showed a 
good linear relationship between estimate n and n entropy calculation and n with the bedform. 
Obtained from linear regression analysis of the data relationships flume ncalculate= 0,5803netropi + 
0,010 with good correlation (R2 = 0.864) using the entropy parameter  (M) = 0.8197, while for 
the data in a natural channel ncalculate = 0.754 netropy+ 0.006 with good correlation (R2 = 0.877) with 
(M) = 0.914. It also has a fault tolerance (0.005 to 0.293)%, which is still below the tolerance. 
 
Keywords: entropy models, manning's roughness; steady flow, laboratory flume 
 

1.  Introduction 
 In hydraulic engineering, flow resistance coefficient or the Manning roughness 
coefficient is an important parameter in forecasting the flow in the channel, designing 
hydraulic structures, the calculation of the distribution of velocities, sediment transport 
and accuracy in the determination of the energy loss (Bilgil & Altun, 2008).  
 River flow forecasting is a very important step in order to improve management 
policies directed to the use of water resources as well as for mitigation, prevention and 
defense measures against environmental degradation (Greco et al., 2014). In addition, 
knowledge of the velocity distribution in the cross section of the river is fundamental in 
hydraulic modeling of the river, sediment and pollutant transport, channel design, river 
training work and hydraulic structures as well as in the manufacture of curves rating 
(Greco et al., 2014; Mirauda et al ., 2011b). In relation to the resistance to flow and 
velocity distribution in alluvial channels is a complication of the two problems. Firstly 
due to changes in the bedform and second a result of certain conditions of the majority of 
sediment transport particles acted as a suspension. On the alluvial of bed channels that are 
not fixed it will change its geometry and dimensional characteristics continuously as a 
result of the interaction between the flow and the channel bed (Yang & Tan, 2008; 
Singih, 2000). 
 In addition, the flow in open channels is limited to the aspect ratio of the width - 
depth three-dimensional , and wall shear stress are not evenly distributed around the wet 
cross-section. This is due to the free surface and the secondary flow (Guo & Julien, 2005; 
Azamathulla et al., 2013). Problems in separating the bed shear stress and the sidewalls 
are very important in almost all studies on open channel flow in this laboratory flume 
studies (Guo & Julien, 2005). Boundary shear stress distribution in hydraulic equation 
concerning the problem of resistance to the flow and sediment transport, (Javid 
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&Mohammadi, 2012). Method forcorrecting the sidewall (Johnson, 1942; Keulegan, 
1938; Julien 1995; Yang & Lim, 1998; Mohammadi, 2004; Javid & Mohammadi, 2012). 
 A Mathematical model, which is derived from the application of the theory of 
information entropy maximization on the data collected, used to evaluate the flow field 
and calculate water discharge (Chiu, 1987,1988 & 1989; Chiu & Said, 1995; Chiu & Hsu, 
2006; Moramarco & Singh, 2010, Mirauda et al., 2011b ; Greco et al., 2014). 
 Velocity distribution entropy, In fact, requires assessment on one parameter, M, 
which it can be obtained through knowledge of the ratio of the average flow velocity and 
maximum. In addition, the rules allow the natural flow well enough about the reliability 
of geometric irregularities and normal flow regime (Greco, 1998; Chiu et al., 2005; 
Burnelli et al., 2008). Application of the entropic profile in river flows also menawaran 
good results even for practical purposes. 
 In order to determine the velocity distribution in the cross section and provide 
acceleration on the method of calculation of the flow of water and reduce the calculation 
time of the survey and (Greco & Mirauda, 2004; Mirauda et al., 2011a, b). And also 
modeling the two-dimensional velocity distributions for open channel flow (Marini et al., 
2011). Furthermore, the ratio between average velocity and maximum, Ф (M), it appears 
to be highly dependent on the riverbed morphology with uniform flow. This shows that 
the investigation of the entropy parameter depends on the hydraulic and geometric 
characteristics of the cross section of the river (Moramarco & Singh, 2010, 2011). 
 Therefore, the study of bed roughness with speed theory of entropy, the proposed 
formulation in n Manning roughness, based Ф (M) and the position in which the velocity 
of each. The purpose of this paper is the first to investigate the Manning roughness 
coefficient on entropy parameters in the case of low flow regimes. second to acquire bed 
calculation on the boundary shear stress in an open channel boundary rectangular shape. 
Then, assuming a variety of slope sidewalls, as a first approximation, the solution to the 
boundary shear stress calculations using isovel and ray procedures, ignoring the 
secondary currents and eddy viscosity is assumed constant value. 

 
2. Study of Theory 
2.1.  Relationship Roughness (n) Manning and Entropy Parameters (M) 

The average velocity, ഥܷrerata mean and ܷmaximum velocity, Umax, open channel 
flow cross section can be expressed in terms of entropy (Chiu and Said, 1995), as 
Equation (1) 

Uഥ =  Φ (M)U୫ୟ୶.....................................................................(1) 
which Φ (M) can be described in the form of Equation (2) 

Φ (M) =  ቀ ୣ౉

ୣ౉ିଵ
− ଵ

୑
ቁ................................................................(2) 

where M expressed entropy parameter (Chao and Lin Chiu, 1988; Moramarco and Singh 
,2010; Greco et al., 2014 ). Eq. (1) shows that Uഥ and U୫ୟ୶ together can determine 
Φ (M)and then the entropy parameter M. It should be pointed out that U୫ୟ୶ represents 
the maximum value in the data set of velocity points sampled in the flow area during 
velocity measurement (Chiu &Said 1995; Greco et al., 2014) The vertical where umax is 
sampled is defined, henceforth, as the y axis (Chiu 1989). 

The average velocity on a steady flow in open channel can be estimated by using 
the Manning formula as Equation (3) 

Uഥ = ଵ
௡

R୦
ଶ/ଷS୤ଵ/ଶ..............................................................(3) 

Where n is the Manning roughness coefficient, R୦ is the hydraulic radius and S୤ is 
the energy slope. Instead, to determine the maximum velocity the cross section, U୫ୟ୶, 
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along the y-axis are assumed to be perpendicular to the bottom, modified logarithmic rule 
under water (dip) for the velocity distribution in open channel flow uniformly smooth, 
proposed by Yang et al. (2004), as Equation (4) 

u(y) = ∗ݑ ቂ
ଵ


lnቀ ௬
௬బ
ቁ+ ఈ


ln(1 − ௬

௛
)ቃ..............................................(4) 

Which ݑ∗ = ඥ݃ ܴ௕ ௙ܵis the shear velocity (g = acceleration of gravity);  is the 
von Kármán constant equal to (0.41); y0 is the distance at which hypothetically velocity is 
equal to zero; α is the correction factor on the condition of the flow, which depends only 
on the ratio between the relative distance to the location of the maximum velocity of bed 
channel,  y୫ୟ୶and flow depth (h) along the y-axis, which U୫ୟ୶ location. 

Location maximum velocity, based on the hypothesis that the dip phenomenonwith 
Yang et al. (2004 ; Moramarco & Singh, 2010) can be obtained by separating the Eqs. (4) 
and differentiation du/dy = 0, which gives the result in Equation (5) 

௬೘ೌೣ
௛

= ଵ
ଵାఈ

 ....................................... .................................... (5) 
 
Experimental study by Greco and Mirauda (2002) have shown that, for channels on 

various forms of cross-section, the maximum velocity is below the free surface of about 
20 ÷ 25% of the maximum depth. This result was also confirmed from the values ymax 
collected in experimental trials of this work and is shown in Fig. (1), which ymax is a 
function of water depth (h) 

 
 

Figure 1. The Relationship between the Location of the MaximumVelocity and maximum y and 
Depth (Mirauda&Gerco, 2012) 

 
 
 

ܷ௠௔௫ = ඥ௚ ோ್ௌ೑


ቂln ቀ௬೘ೌೣ
௬బ

ቁ − 0,4621ቃ ..................................................(6) 

By replacing Equation (3) and (1) into Equation (4). it is possible to derive a 
relationship as Equation (7). 

 

ቀ ୣ౉

ୣ౉ିଵ
− ଵ

୑
ቁ =

భ
೙ୖ౞

మ/యୗ౜
భ/మ

ට೒ ೃ್ೄ೑

 ቂ୪୬ ቀ೤೘ೌೣ
೤బ

ቁି଴,ସ଺ଶଵቃ

 or (M) =
భ
೙ୖ౞

భ/ల√௚
భ
ቂ୪୬ ቀ೤೘ೌೣ

೤బ
ቁି଴,ସ଺ଶଵቃ

  

.........................(7) 
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which allows to connect Φ (M) with hydraulic and geometric characteristics of the flow. 
Finally, from Equation (30) Manning n roughness values obtained as Eq. (8) 

݊ = ୖ౞
భ/ల√௚

஍ (୑).భቂ୪୬ ቀ೤೘ೌೣ
೤బ

ቁି଴,ସ଺ଶଵቃ
 .........................................................(8) 

 
Equation (8) which concluded on the calculation of roughness (n) Manning by using the 
value of Φ (M) as well as calibrate the value of ௬೘ೌೣ

௬బ
. In fact, to determine Φ (M) in each 

test and the application of Manning n value, which is obtained by Eq. (3) into Eq. (8), to 
obtain (௬೘ೌೣ

௬బ
), as it has been studied by Gerco et al. (2014) and Mirauda and Gerco (2012) 

the importance of the ymax is equal to ¾ of water depth (h), as in equation (9). 
௬೘ೌೣ
௬బ

= ଷ
ସ
௛
௬௢

 ...............................................................(9) 

so that Equation (31) can be written in the form of Equation (10) 

݊ = ୖ౞
భ/ల√௚

஍ (୑).భቂ୪୬ ቀయర. ೓೤೚ቁି଴,ସ଺ଶଵቃ
 .............................................(10) 

 value is near the channel bed which is assumed as the value of equivalent roughness ݋ݕ
(ks). There is no clear consensus on the definition ksand not surprisingly, there are a 
variety of various values of ks values' (1,25d35 ≤ ks ≤5,1d84) has been proposed (Van Rijn, 
1982). However Millar (1999) has found that there was no significant difference between 
using the D35, D50, d84 or d90. In this study, ks suggested by Casey (1935), Shields 
(1935), Straub (1954) will be used, ie, 

݇௦ᇱ = ݀ହ଴....................................................................(14) 

 
2.2 Shear Stress Relationship and Manning Roughness Coefficient (n) 

NHC partitioned the bed shear stress into two components, total shear stress (்) 
and grain shear stress (߬′), and then derived the following relation Equation (15) 

ఛᇱ
೅
∝  ఒᇱ

ఒ೅
  .......................................................................(15) 

Here, ߣ′ and ்ߣ are the Darcy friction factors associated with grain and total 
roughness, respectively. Grain roughness, fg, can be computed using the following 
empirical relation (Henderson, 1966):  

′ߣ = 0,113(଼݀ସ ܴ௛⁄ )ଵ/ଷ.......................................................(16) 
In this relation ܴ௛  is the hydraulic radius of the channel (in feet) and ଼݀ସ is the 

particle diameter (in feet) that exceeds 84 percent of the particles sampled. Combining the 
Manning's and Darcy equations, total roughness, ft , can be computed using the following 
Equation (17) 

்ߣ = 8݃( ௡೅
ଵ,ସଽோభ/ల) ...............................................................(17) 

According to Einstein (1942) and Meyer-Peter, Muller (1948) and Yang and Tan 
(2008), the shear stress can be separated into the shear stress due to the side wall and 
shear stress due to the bed, as written in equation (18) 

்௕ =  ߬௪ + ߬௕ = ߬௪ +  ߬௕ᇱ + ߬௕ᇱᇱ........................................(18) 

Where ்  is the shear stress limit of the average; ߬௪is side wall shear stress; ߬௕isbed 
shear stress =߬௕ᇱ + ߬௕ᇱᇱ. 
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2.2.1  Average Bed Shear Stress Equation 
By considering the steady uniform flow in rectangular open channel. In the flow 

direction defines the direction x, and y-z cross section is shown in Fig. (2) 
 
 
 
 
 
 
 
 
 

Figure 2. Coordinate Systems in Open Channel Flow (Guo&Julien, 2005) 
 

Guo and Julien (2005) analyzed the methods by considering the volume control 
BCHGB (Ab) in Figure (1), which has a unit of length. in the flow direction x and 
assumed in the determination of BG and CH are symmetric with respect to the z axis. In 
addition, the main flow velocity in each of the x-axis is denoted as u, and the secondary 
current in the yz plane is v and w. By analysis using the continuity equation and 
momentum, then the shear stress obtained an average basis. The average shear stress is 
composed of three terms, namely gravity (I), the secondary current (II), and interfaces 
(interfaces) shear stress (III) in equation (19)  

߬௕ഥ = ఘ௚ௌ஺್ 
௕

− ଶ
௕ ∫ ݖ݀ ݒ)ݑߩ − (ݕ݀ ݓ +଴

௅
ଶ
௕ ∫ ൫߬௬௫ ݖ݀  − ߬௭௫݀ݕ൯

଴
௅  

………………..(19) 

             (I)                        (II)                                 (III) 

 

 

 
 
 
 
 
 

Figure 3 The Cross-section Transverse Partitions Area Separation on Bed Shear Stress 
and Sidewall (Guo & Julien, 2005) 

 
For the case of a steady uniform flow in open channels in a rectangular shape; 

where g is the acceleration due to gravity; ρ = mass density of water; S = slope of the 
channel bottom slope; b is the width of the channel; and ߬௬௫and ߬௭௫ = shear stress in the 
flow direction x is applied to each field z-x and y-x. It can be proved that although 
Equation (19) is taken to smooth rectangular channels, it is also applicable to all types of 
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cross sections along the BG and CH are symmetrical (Guo & Julien, 2005; Yang et al., 
2006). 

 
2.2.2 Average Side-Wall Shear Stress Equation 

Similarly, the side wall shear stress on average ߬௪തതതത can be formulated by applying 
the equation. ∫ ݑߩ ቀడ௩

డ௬
+ డ௪

డ௭
ቁ݀ܣ = ܸ ܵ݃ߩ + ∫ ቀ߬௬௫

డ௬
డ௡

+ ߬௬௫
డ௭
డ௡
ቁ ଵܣ݀ 

஺
௩
஺ , with volume 

control BGEB or CFHC in Fig. (3). The decline in the side wall shear stress formulation 
average is to consider the overall balance of force in the direction of flow. As defined in 
Equation (20) 

2ℎ߬௪തതതത + ܾ߬௕ഥ = ௕ܣܵ݃ߩ =  ℎ ………………………(20)ܾ ܵ݃ߩ

Where the first form in the left hand side is the shear force on the two sides of the 
side walls, the second form is the shear force on the base of the channel, and the right-
hand side is the component of gravity in the direction of water flow. Applying Eq. (19) in 
Eq. (20) give the side wall shear stress averaged as Equation (21). 

߬௪തതതത = ఘ௚ௌ ௕௛ି௕ఛ್തതത
ଶ௛

= ఘ௚ௌ ஺ೢ
ଶ௛

+ ଵ
௛ ∫ ଵߩ 

஼ு ݖ݀ݒ)ݑ − (ݕ݀ݓ + ଵ
௛ ∫

ଵ
஼ு ൫߬௬௫݀ݖ −

߬௬௫݀(21)…(ݕ 

Where ܣ௪ = ܾℎ −  ௕. In Equation (19) and (21), it can be seen that the shearܣ
stress boundary consists of three components: the first term is the contribution of gravity, 
the second term is the effect of secondary flow, and the third term is the effect of fluid 
shear stress, which in turn, reflects the effect of viscosity in a turbulent eddy currents. The 
first form that is dominant with a small contribution from the second and third forms on 
the right hand side of the Equation. (19) and (21). 

 
2.2.3 First Approximation Without Secondary Currents 

To estimate the boundary shear stress, using Equation (19) and (21), we must know 
the main velocity u and secondary currents, v and w, shear stress ߬௬௫and  ߬௭௫and and 
integration path BG and CH. On the other hand, to solve for the velocity field, we must 
know the boundary shear stress. Interaction between velocity and shear stress makes the 
solution to the boundary shear stress or velocity profiles are very complex profile, as 
shown by Chiu and Chiou (1986). As an approach, we can ignore the effects of secondary 
flow and fluid shear stress. Thus, equation (19) into Equation (22a) and (22b) 

߬௕ഥ = ఘ௚ௌ஺್ 
௕

 …………………………………………..(22a) 

or                                                 ఛ್തതത
ఘ௚௛ௌ

= ஺್ 
௕௛

 

…………........…….......…………………..(22b) 

And Equation (19) into Equation (23a) and (23b). 

߬௪തതതത = ఘ௚ௌ ஺ೢ
ଶ௛

  …………………………..……………(23a) 

or ఛೢതതതത
ఘ௚ௌ௛

= ஺ೢ
ଶ௛మ

 ……....……......………….........….....…..(23b) 

The remaining problem is to find an area of Ab and Aw, which is equivalent to 
finding the determination of BG and CH in Figure (3). 
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2.2.4  Delimitations BG and CH 
By showing that the momentum equation corresponding to the flow direction x is 

as Equation (24) 

ߩ ቀݒ డ௨
డ௬

+ ݓ డ௨
డ௭
ቁ = ܵ݃ߩ  + డఛ೤ೣ

డ௬
+ డఛ೤ೣ

డ௭
………………………..(24) 

Convective acceleration on the left side of Equation (24) accounted for the secondary 
flow. The first form on the right side is the component of gravity in the direction of flow, 
and the other two are a potential flow (net) shear stress is applied to the fluid differential 
element. The first approach assumes that: (1) secondary current is not negligible; and  (2) 
eddy viscosit ߭௧  is constant. Applying these two assumptions to Equation (24) gives 
Equation (25) 

డమ௨
డ௬మ

+ డమ௨
డ௭మ

= − ௚ௌ
జାజ೟

=  (25)................................................... ݐ݊ܽݐݏ݊݋ܿ

Where ߬௬௫ = ߭)ߩ + ߭௧)߲ݑ ⁄ݕ߲ ݑ߲ ; ⁄ݕ߲  ; ߲߬௭௫ = ߭)ߩ + ߭௧)߲ݑ ⁄ݖ߲ and υ = 
kinematic viscosity of water. Equation (25) is called the Poisson equation and can be 
solved by means of Laurent series (White, 1991; Guo & Julien, 2005). That is, orthogonal 
velocity contours are used to describe the BG and CH in Figure (3). Although the solution 
to Equation (24) provides a laminar velocity profile, and orthogonal provide a first 
approximation to the boundary shear stress. To determine the limits of the potential lines 
and flow lines. Its solution using the Schwarz-Christoffel transformation (Driscoll el al., 
2002, Spiegel, 1993) by using an assumption of rectangular cross section channel width b 
and depth h flow of figure (3) and the aspect ratio of the channel side walls.  
By using formulation Transformation Schwarz-related Chistoffel the physical domain 
flow (plane -) and middle upper field (plane -) as Equation (26a) and (26b). 

 = ܣ + ܤ ∫(z − ି(ଵݔ
ഀభ
ഏ (z − ି(ଶݔ

ഀమ
ഏ  (26a)....................................ݖ݀ 

or                                        డ
డ௭

= z) ܤ − ି(ଵݔ
ഀభ
ഏ (z−

ି(ଶݔ
ഀమ
ഏ ...........................................(26b) 

In the form of orthogonal and isotropy as Equation (26c) 
డ
డ

= −) ܤ ି(ଵݔ
ഀభ
ഏ (− ି(ଶݔ

ഀమ
ഏ ............................................(26c) 

by takingݔଵ =  −ܾ 2⁄ ଶݔ ;  =  ܾ 2⁄  ; w ଵ = ߨ− 2⁄  ;  w ଶ = ߨ 2⁄ ; dan ߙଵ = ߨ  2⁄  , 
ଶߙ = ߨ  2⁄ , then Equation (26c) will be Equation (27) 

డ
డ

= + ቀ ܤ గ
௕
ቁ
ିభమ ቀ− గ

௕
ቁ
ିభమ.................................................(27) 

Where z = y + iz and ω =  + iη; B is a constant change of form; -b / 2 and b / 2 is any 
value in each of the left and right ends of the cross section in the channel changes. In 
other words, the value of which crossed at an angle equal to -b/2 and + b/2. Applying the 
theorem of integration in Equation (27) can be solved by several methods, namely 
Hipergeometri (Javid & Mohammadi, 2012), using the Laurent series (Guo & Julien, 
2005) and entropy (Chao-Lin Chiu, 1986 & 1988; Houjou et al., 1990; Samani el al., 
2013). 
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 Dengan prinsip Isovel 

By taking = ୠ
గ

danݖ = ௕
ଶ

exp (−1,261 ௬
௕

)...............................(28) 

And the cross-sectional area average shear, as Equation (29) 

௕ܣ = 2 ∫ ௛ݕ݀ ݖ
଴  = 2∫ ௕

ଶ
exp (−1,261 ௭

௕
௛ݖ݀ (

଴ ..........................................(29) 

 

 

 

 

 

 

 

Use of the software Mathcad will obtain Equation (30) 

௕ܣ = 0,793ܾଶ(exp (−1,261 ℎ ܾ) − 1)⁄ ...................................................(30) 

By substituting Equation (30) in equation (22b), the shear stress resulting an average bed 

as Equation (31a) 
ఛ್തതത

ఘ௚௛ௌ
= ଴,଻ଽଷ௕మ(ିଵାୣ୶୮ (ଵ,ଶ଺ଵ௛ ௕))⁄

௕௛
=

 0,793 ௕
௛

(exp (−1,261 ℎ ܾ) − 1)⁄ ..................(31a) 

Similarly to the side wall shear stress on average, by substituting Equation (30) into 
Equation (23b) the importance of the equation (31b) 

ఛೢതതതത
ఘ௚ௌ௛

= (௕௛ି ஺್)
ଶ௛మ

= (௕௛ି ଴,଻ଽଷ௕మ(ିଵାୣ୶୮(ିଵ,ଶ଺ଵ௛ ௕))⁄ )
ଶ௛మ

..............................(31b) 

 
2.2.5 Second Approximation with Correction Factors 

The first approach implies that the maximum velocity occurs at the surface of the 
water. However, research by Javid (2011) and Javid and Mohammadi (2011) illustrates 
that specific performance on the secondary flow cell in a rectangle channel changing 
pattern of flow lines and potential lines, especially in the corners and the surface of the 
water. Thus, the second approach aims to improve on the first approach by introducing 
two empirical correction factors are lumped in the first approach. 
By substituting Equation (29) into equation (22b) gives Equation (32) 

ఛ್തതത
ఘ௚௛ௌ

= 2∫ ௕
ଶ

exp ቀ−1,261 ௭
௕
ቁ ௛ݖ݀

଴ ………………………………(32) 

Application integration theorem in further section and the mean value theorem for 
integration in the above equation gives Equation (33) 

ఛ್തതത
ఘ௚௛ௌ

= 0,793ܾଶ(1 − ℎ 1,261−) ݌ݔܧ ܾ⁄ ) ………………………………(33) 

Figure 4. Calculation Form Isovel and Orthogonal 
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By including the effect of secondary flow, variable flow viscosity and perhaps 
other effects, two empirical correction factor that is ߣଵand ߣଶ. Equation (33) can be 
assumed to be the Equation (34). 

ఛ್തതത
ఘ௚௛ௌ

= exp (−1,261 ௛
௕

) − ℎߣ ିଵ,ଶ଺ଵ
௕

ቀ−1,261 ݌ݔܧ ఒ௛
௕
ቁ 

……………………………(34) 

Where λh is located at a point such that 0 <λ <1 and to satisfy the value theorem 
average conditions, numerical evaluation shows that the first form on the right side of the 
meruoakan main form and provide only a small effect on the first form. This is analogous 
to Guo and Julien (2002), so that Equation (34) can be fixed into Equation (35). 

ఛ್തതത
ఘ௚௛ௌ

= exp (−1,261 ௛
௕

) −

ଵ(௛ߣ
௕

ቀ−1,261 ݌ݔܧ( ఒమ௛
௕
ቁ...............................................(35) 

By substituting Equation (35) into Equation (22b) and provides a second approach 
on the side wall shear stress on average. In rectangular channel sidewall aspect ratio, 
Equation (23b) reduces to Equation (36). 

ఛೢതതതത
ఘ௚௛ௌ

= ଵ
ଶ
௕
௛

(1− ఛ್തതത
ఘ௚௛ௌ

) …………………………………….(36) 

To get the value of ߣଵ and ߣଶଵ, the calibration of the Equation (34) so that it will 
comply with the empirical formula. 

 
3. Experimental Data 

The experimental tests were carried out in the Hydraulics Laboratory of Bandung 
Institute of Technology, on a free surfaceflume of 3,0 m length and with a cross section 
of 0,1 x 0,4 m2  (Fig. 1a), whose slope can vary from 2/300  % up to 4/300 %. at a 
distance of 1 from the upstream timber bulkhead installed upstream so that the sand does 
not exit. An example of a sample of sand with a maxsimum grain diameter of 0,45mm to 
0,85mm. Picture design can be found at Fig.5 
 

 

 

 

 

 

 

 

 

 

4. Experimental Data Analysis 
The data used for the analysis of experimental results of Choo et al. (2011) and 

Greco et al. (2014) as in Table (1). 
 
 

Figura 5. Flume Conditions along with AdditionalEquipment used 
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Table 1. Results of Linear Regression Analysis between Urerata and U max 

Data Source Data Relationship 
Equation 

 (M) R2 

Laboratory Abdel=Ael,F.M(1969) Umean =0,8657 Umax 0,8657 0,9998 
 Govt. of W. Bengal(1965) Umean =0,8197 Umax 0,8197 0,9987 
 Chyn, S.D(1935) Umean =0,8521 Umax 0,8521 0,9998 
 Costello, W.R.(1974) Umean =0,8667 Umax 0,8667 0,9998 
 Greco el al. (2014) Umean =0,7314 Umax 0,7300 0,8840 
River Acop Canaldata of 

Mahmood, et al. (1979) 
Umean =0,911 Umax 0,9110 0,999 

 Hii River data of 
Shinohara, K. and 
Tsubaki, T.(1959) 

Umean =0,882 Umax 0,8820 0,992 

 Leopold, L.B.(1969) Umean =0,914 Umax 0,9140 0,999 
 Greco el al. (2014) Umean =0,702 Umax 0,7060 0,8957 
 

Table 2. Results of  Laboratory Experiments. 

 
Source data : Singih (2001) 

 
Table 3. Results of Calculation Manning with the basic form 

Q (l/dt) h(m) R(m) u1(m/dt) Slope Fr u* u/u* d50 n np 
2,51440 0,08 0,26 0,314 0,007 0,355 0,072 5,055 0,001 0,0196 0,0166 
2,86780 0,11 0,32 0,261 0,007 0,251 0,085 2,646 0,001 0,0367 0,0166 
2,67970 0,13 0,35 0,214 0,007 0,194 0,090 2,726 0,001 0,0354 0,0166 
4,52140 0,14 0,38 0,323 0,007 0,276 0,096 3,241 0,001 0,0298 0,0166 
3,06100 0,12 0,34 0,253 0,013 0,232 0,126 2,207 0,001 0,0438 0,0166 
3,70830 0,13 0,36 0,285 0,013 0,253 0,130 2,178 0,001 0,0443 0,0166 
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Q (l/dt) h(m) R(m) u1(m/dt) Slope Fr u* u/u* d50 n np 
3,81730 0,14 0,38 0,273 0,013 0,233 0,135 2,240 0,001 0,0431 0,0166 
4,34490 0,15 0,40 0,290 0,013 0,239 0,140 2,289 0,001 0,0421 0,0166 
2,81110 0,11 0,32 0,256 0,007 0,246 0,085 3,343 0,000 0,0290 0,0152 
4,25980 0,12 0,34 0,352 0,007 0,323 0,089 4,389 0,000 0,0175 0,0152 
2,86610 0,13 0,35 0,229 0,007 0,207 0,090 3,112 0,000 0,0311 0,0152 
4,10420 0,14 0,38 0,293 0,007 0,250 0,096 2,931 0,000 0,0329 0,0152 
2,90150 0,10 0,30 0,290 0,013 0,293 0,114 2,831 0,000 0,0344 0,0152 
4,99270 0,13 0,36 0,381 0,013 0,336 0,131 3,094 0,000 0,0312 0,0152 
5,44780 0,14 0,38 0,389 0,013 0,332 0,135 2,924 0,000 0,0330 0,0152 
6,42860 0,15 0,40 0,429 0,013 0,353 0,140 2,791 0,000 0,0345 0,0152 

n = Manning roughness values calculate; np = Manning roughness values with bedform 
n with parameter estimation results can be seen in the graph entropy 
 
Comparison with Experimental Data 

Calculate the prediction accuracy by using the average normal faults (MNE) is 







N

i mi

mici

X
XX

N
MNE

1

100 , ............................................................(37) 

withN = many of data, Xmi = measurement data in the laboratory andXci= Data results of 

numerical calculations. 

Table 4. Function Error on the Value of n Manning 
n ent 

M()=0,866 n n bed error Function 
n ent 

M()=0,820 error Function 
n ent 

M()=0,852 error Function 

0,021 0,0196 0,0166 0,094 0,154 0,023 0,155 0,154 0,022 0,111 0,154 

0,040 0,0367 0,0166 0,085 0,548 0,042 0,146 0,548 0,040 0,102 0,548 

0,038 0,0354 0,0166 0,074 0,533 0,040 0,134 0,533 0,039 0,091 0,533 

0,031 0,0298 0,0166 0,036 0,444 0,033 0,094 0,444 0,031 0,052 0,444 

0,056 0,0438 0,0166 0,272 0,622 0,059 0,344 0,622 0,057 0,293 0,622 

0,050 0,0443 0,0166 0,124 0,626 0,053 0,188 0,626 0,051 0,142 0,626 

0,055 0,0431 0,0166 0,281 0,616 0,058 0,353 0,616 0,056 0,301 0,616 

0,053 0,0421 0,0166 0,262 0,607 0,056 0,333 0,607 0,054 0,282 0,607 

0,034 0,0290 0,0152 0,173 0,477 0,036 0,239 0,477 0,035 0,192 0,477 

0,025 0,0175 0,0152 0,408 0,135 0,026 0,487 0,135 0,025 0,431 0,135 

0,042 0,0311 0,0152 0,338 0,511 0,044 0,413 0,511 0,042 0,360 0,511 

0,033 0,0329 0,0152 0,000 0,539 0,035 0,057 0,539 0,033 0,016 0,539 

0,042 0,0344 0,0152 0,224 0,559 0,045 0,293 0,559 0,043 0,244 0,559 

0,035 0,0312 0,0152 0,125 0,514 0,037 0,188 0,514 0,036 0,143 0,514 

0,035 0,0330 0,0152 0,076 0,540 0,037 0,136 0,540 0,036 0,093 0,540 

0,033 0,0345 0,0152 0,049 0,561 0,035 0,005 0,561 0,033 -0,034 0,561 
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Figure 6. Relationship Between Manning Coefficient between ncalculation and n entropy  
 

 

 

 

 

 

 

 

 

 
Figure 7. Linear Relationship between the Manning coefficient n entropy and n calculate 

 
The next calculations carried Tabelaris 
 

Table 4 The Results of Calculations with DifferentValues (M) 

Data Source Data Relationship Equation n  (M) R2 

Laboratory Abdel=Ael,F.M(1969) nhitung = 0,693netr + 0,007 0,8657 0,846 

 Govt. of W. Bengal (1965) nhitung = 0,5803netr + 0,010 0,8197 0,864 

 Chyn, S.D(1935) nhitung = 0,682 netr + 0,007 0,8521 0,846 

 Costello, W.R.(1974) nhitung = 0,694 netr + 0,007 0,8667 0,846 

 Greco el al. (2014) nhitung = 0,584 netr + 0,006 0,7300 0,846 

River Mahmood, et al. (1979) nhitung = 0,729 netr + 0,0067 0,9110 0,846 

 Shinohara&Tsubaki(1959) nhitung = 0,7058 netr + 0,0067 0,8820 0,846 

y = 0,693x + 0,007
R² = 0,846
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y = 0,334ln(x) + 0,282

R² = 0,998
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Fig. 10 Relations mean bed shear velocity 
with aspect ratio

 Leopold, L.B.(1969) nhitung = 0,754 netr + 0,006 0,9140 0,877 

 Greco el al. (2014) nhitung = 0,5649 netr + 0,0067 0,7060 0,846 

Source Data : Results Calculate 
 

The results are plotted in Table (3) and Figure (6) and (7) and showed a good 
acceptance pda good roughness coefficient of using entropy as well as with the bedform. 
Relationships between variables in both methods showed a good correlation with the 
variation of entropy parameters  (M) = 0,706 to 0,911 for the natural river that gives the 
correlation value of R2 = 0.846 to 0.877. While in the laboratory flume entropy parameter 
value  (M) = 0,730 to 0,867; with a correlation value of R2 = 0,846 to 0,864. 

Therefore, at low depth or low regime, the use of Eq. (10) together with the 
assumption verified ymax in ¾ h from the bottom of the channel, will provide a better 
assessment and faster than the Manning roughness against perhitung on Moramarco and 
Singh (2010) with a constant value at y0, and the observed values of ymax, it will be 
difficult to be evaluated in field measurements. Furthermore, important to be underlined 
that is how, with a regime of low or shallow depth, giving effect to the parameter M on 
geometric and hydraulic characteristics of the flow, and provide valid results through 
analysis performed on the experimental data presented here. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8 Value of first approximation and second 
approximationfor average bed shear stress 
with experimental data 

Fig.9  Value of  of first approximation and second 
approximationfor average side-wall shear 
stress with experimental data 

Fig.10 Value of  of first approximation and second 
approximationfor average mean bed shear 
velocity with experimental data 
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Thisanalysisdefinesthe sidewallshear stressandthe averagebaseona 
steadyuniformflowinasmoothrectangularchannels. Analysis ofthe 
continuityandmomentumequationsproduceformulationsfor the averageshear stressin Eq. 
(19) andthe sidewallshear stressonaveragein Eq. (21). Bothformulationsshowed the 
importance ofthe threemaintermsin theshear stressanalysis: (1) the form ofgravity; (2) 
forms ofsecondaryflow; and(3) stressshear at the interface. 
Ananalyticalsolutionsarepossiblefor the casein whichthe eddyviscosityisconstantandthe 
secondaryflowthatcanbe ignored. Thisanalyticalsolutionis obtainedafterconsidering 
theSchwarz-Christoffeltransformation. Thisleads to afirst approximationin terms ofthe 
seriesexpansionforthe shear stressin Eq. (31.a) andsidewallshear stressin Eq. (31b). 

In figure (8) above results show the relationship of non-dimensional shear stress 
there is the aspect ratio B / h on the wall showed good results, while the side walls 
showed poor correlation. Traditionally the bed shear velocity is determined by fitting the 
near bed velocity pro fi le to the logarithmic law when studying turbulent velocity 
profiles in flume experiments (Nezu and Nakagawa 1993). In relation with the aspect 
ratio resulting a good correlation between these variables, it is shown by the Figure (10) 
the relationship ௎∗

ఘ௚௛ௌ
= 0,2007 ln(஻

௛
) + 0,999 with correlation R2 = 0,9999. 

 
5. Conclusion 
 Application entropic on the velocity profile to the river, can be used in evaluating 

the flow rate, reducing the time and trouble in the fluvial control and monitoring 
activities. 

 In addition, the formulation of n Manning roughness, which is based on entropy 
parameter (M), and the ratio between the position where the velocity is zero and 
the maximum velocity, ݕ଴ ⁄௠௔௫ݕ , which could be useful to overcome the 
uncertainty in the evaluation of the resistance parameters, especially the existence 
of roughness relatively large. 

 The analysis shows how ݕ଴ ⁄௠௔௫ݕ dependence on bed roughness value h/yo in 
promoting the Manning roughness n, through the formulation proposed by 
Moramarco Singh (2010) and modified by considering ymax for ¾ of water depth 
(h). The results of that impose on the relationship between entropy and the 
parameters of hydraulic and geometric characteristics of the flow. 
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